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ABSTRACT

The supervisory control of discrete event systems provides a framework for control of event-

driven systems. Applications of supervisory control theory include protocol design for commu-

nication processes, control logic synthesis in manufacturing systems, and collision avoidance

in human-computer interaction systems.

When designing a system at a certain level of abstraction, lower level details of the system

and its specification are normally omitted to obtain higher level models that may be (non-

deterministic) event-driven systems. Nondeterministic systems exhibit both branching and

sequential behaviors and are captured using bisimulation equivalence (the traditional language

equivalence only captures sequential behaviors). Simulation equivalence is more expressive

than language equivalence but captures only the universal fragment of branching behaviors.

This dissertation presents supervisory control of discrete event systems for enforcing bisim-

ulation equivalence or simulation equivalence with respect to given specifications. We show

that in the general setting of nondeterministic systems and specifications, the complexity for

bisimilarity enforcing control is doubly exponential and for similarity enforcing control remains

polynomial solvable. So the choice of behavioral equivalence used depends on the application

at hand and there is a trade-off between the expressivity and the complexity. We further show

that the bisimilarity enforcing control problem becomes polynomially solvable when the system

model is deterministic and there is complete observability of events. When the complete ob-

servability requirement is relaxed, the control existence problem remains polynomially solvable

and the control synthesis problem becomes singly exponential. These complexities are similar

to the ones for control under partial observation in completely deterministic setting Tsitsiklis

(1989).
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We introduce various notions of state-controllability (SC), state-recognizability (SR), state-

achievability (SA), state-controllable-similar (SCS), state-controllability-bisimilar (SCB), and

state-achievability-bisimilar (SAB) for deterministic system model. SC is a property of a con-

trolled system under complete observation. Under partial observation, an additional property

of a controlled system due to the partial observation is SR. The combined property of SC and

SR is called SA. We show that properties of SC, SR and SA are not preserved under bisim-

ulation equivalence and therefore cannot be served as a necessary condition for the existence

of a bisimilarity enforcing supervisor. We introduce the notions of SCB and SAB, which are

preserved under bisimulation, as part of the necessary and sufficient condition for the exis-

tence of a supervisor under complete and partial observation, respectively. We show that SC

is not preserved under simulation equivalence and introduce SCS as a necessary and sufficient

condition for the existence of a similarity enforcing supervisor under complete observation.

The aforementioned results use strict synchronous composition (SSC) of the system and su-

pervisor as a mechanism of control. In SSC, it is required that individual systems synchronously

execute all events. Prioritized synchronous composition (PSC) relaxed such synchronization

requirements and this has been shown to enrich the control capability when the plant is non-

deterministic. (The presence of nondeterminism in a plant model may cause the current state

to be known with ambiguity, and allowing the flexibility of not synchronizing an event at all

the candidate states that plant may have reached provides for additional benefits.) This dis-

sertation introduces a notion of prioritized synchronous composition under mask (PSCM) to

account for partial observation. We study the supervisory control when PSCM is adopted as

a mechanism of interaction for both language and bisimulation equivalences. We show that

the control & observation-compatibility requirements are removed of a supervisor. For con-

trol to achieve a language equivalence, the existence condition is given by achievability that

is weaker than controllability and observability combined. (The weaker condition is required

since we allow supervisors to be nondeterministic.) This suggests that the notion of PSCM is

an appropriate generalization of PSC to account for partial observation.
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CHAPTER 1. INTRODUCTION

Discrete event systems (DESs) are systems that evolve according to the occurrence of irreg-

ularly occurred events Cassandras and Lafortune (1995); Kumar and Garg (1995). Examples

of events include pressing a button, failure of a device, sending a message though a commu-

nication channel, or water level reaching a limit, etc. A DES has a discrete state-space which

may take symbolic values rather than real values, such as (a software is) running, waiting or

terminated. Examples of DESs include manufacturing systems, communication networks and

reactive software.

1.1 Supervisory Control of DESs

The supervisory control theory of DESs was introduced by Ramadge-Wonham Ramadge

and Wonham (1989) for designing controllers so that the controlled system satisfies a speci-

fication. The event set of a DES, also called a pant, is finite and is partitioned into sets of

controllable events and uncontrollable events. A supervisory controller, also called supervisor,

disables certain controllable events to ensure that the controlled system behavior agrees with

the desired behavior. Prior work in deterministic setting (plant/specification/supervisor all

are deterministic) include control under full Ramadge and Wonham (1989, 1987) or partial ob-

servation Cieslak et al. (1988); Yoo and Lafortune (2001); Prosser et al. (1998), non-blocking

control Kumar et al. (2005c); Fabian and Kumar (2000), modular control Rohloff and Lafor-

tune (2002); Chen et al. (2000), decentralized control Jiang and Kumar (2000); Tripakis (2001);

Kozak and Wonham (1995), and hierarchical control Brave and Heymann (1993); Wong and

Wonham (1996); Zhong and Wonham (1990).

Nondeterminism in plant model can arise from unmodeled dynamics or abstraction. A
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nondeterministic plant can have a language or a finer specification such as: failures Hoare

(1985), refusal-trace (same as trajectory) Phillips (1987); Heymann and Meyer (1991), ready-

trace Baeten et al. (1987), simulation and bisimulation equivalences Milner (1989). Also, the

supervisors can be deterministic as well as nondeterministic.

The control of nondeterministic plant subject to language specification is studied in Shay-

man and Kumar (1995); Kumar and Shayman (1996a, 1997), where plant is modeled using

the trajectory model. In Overkamp (1994) and Heymann and Lin (1998), both plant and

specification are nondeterministic and are represented using failures and trajectory models,

respectively. Authors in Heymann and Lin (1998) show how to transform their control prob-

lem of nondeterministic setting to one of deterministic setting with added partial observability.

Control of plants modeled using nondeterministic state machines for language specification is

also studied in Kumar and Heymann (2000a); Jiang and Kumar (2002). All these work used

deterministic supervisors.

The use of nondeterministic supervisors for specification represented using language model

was explored in Inan (1994); Shayman and Kumar (1999). The notion of nondeterministic con-

trol was formalized in Kumar et al. (2005b) and used for control under partial observation for

language specification, and the notion of achievability (a property weaker than controllability

and observability combined) was introduced. The problem of finding a nondeterministic super-

visor so that it’s parallel-composition with plant conforms to a deterministic specification (via

language containment) is studied in Yevtushenko et al. (2001). Nondeterministic supervisors

were also used in Jiang and Kumar (2006) where nondeterministic specification was specified

in the temporal logic of CTL*, generalizing the work reported in Antoniotti (1995) which used

CTL to express specification. Other work related to control subject to temporal logic based

specification include Kupferman et al. (2001, 2000); Kupferman and Vardi (1999); Arnold et al.

(2003a); Riedweg and Pinchinat (2003).

Bisimulation equivalence is the finest known notion of behavioral equivalence and it was

first introduced in communicating systems by Milner Milner (1980). Bisimulation equivalence

specification is equivalent to a specification in the temporal logic of µ-calculus that subsumes
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the complete branching-time logic CTL* Hennessey and Milner (1985). So if a supervisor is

designed to ensure that the controlled system is bisimilar to a specification system, then this is

equivalent to ensuring that the controlled system satisfies the same µ-calculus or CTL* specifi-

cation that is satisfied by the specification system. On the other hand, a language equivalence

based control only guarantees the satisfaction of a LTL (Linear Temporal Logic) specification

which is a strict subclass of µ-calculus and CTL*. Simulation equivalence is finer than language

equivalence but coarser than bisimulation equivalence. While language equivalence poses no

constraints on the nondeterministic (branching) behavior, and bisimulation equivalence spec-

ifies the exact branching behavior, simulation equivalence specifies also allows any “smaller”

branching behavior. Simulation equivalence preserves universal fragment of µ-calculus speci-

ficationsHenzinger et al. (2003), which is more general than LTL (preserved under language

equivalence) but less general than µ-calculus (preserved under bisimulation equivalence).

Control for achieving CTL* specification was studied by Jiang and Kumar in Jiang and

Kumar (2001), under the assumption that plant model is deterministic. Arnold et al. (2003b)

studied the synthesis of controllers for deterministic plants subject to µ-calculus based speci-

fications under partial observation, where the observation mask is restricted to be projection

type. The control problem is solved by reduction to a discrete-event game problem, and ex-

plicit conditions for the existence of a supervisor are not provided. In this paper we allow both

plant and specification models to be nondeterministic. Furthermore, our approach is quite dif-

ferent: In Jiang and Kumar (2001), the control problem was reduced to a decision problem of

CTL*, whereas our results are based on the properties of the automata models of the plant and

the specification. Given nondeterministic models of plant and its specification, we study the

design of a supervisor (possibly nondeterministic) such that the controlled system is bisimilar

to the specification system. Issues regarding implementation of nondeterministic supervisors

are discussed in Kumar et al. (2005b).

The input-output model matching control studied in Benedetto et al. (2001) also uses

the notion of simulation, and as shown in Barrett and Lafortune (1998) it can be cast as an

instance of standard supervisory control problem of deterministic setting. Khatri et al. (1996)
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studied the problem of finding a controller such that the controlled system is simulated by

the specification, where the plant is assumed to be pseudo-nondeterministic and specification

is allowed to be nondeterministic. Bisimulation relation has been used as a technique for

supervisory control of deterministic systems subject to language equivalence in Rutten (2000);

Komenda (2002b); Marchand and Pinchinat (2000); Komenda (2002a). In Rutten (2000);

Komenda (2002a) the controllability and observability is characterized as a bisimulation type

relation. Qin and Lewis (1990) studied the problem of synthesizing a supervisor so that the

controlled system is bisimilar to a deterministic specification. The event set of the system

and specification need not be same, and all events are treated controllable. Madhusudan and

Thiagarajan (2002) studied control for simulation and bisimulation equivalence for a partial

specification (defined over an “external event set”). The plant is taken to be deterministic

and all events are treated controllable. Further it is required that all indistinguishable events

be either all enabled or all disabled at a state. Such a requirement does not make sense

in supervisory control context. Tabuada (2004) studied the controller synthesis problem for

deterministic plants subject to a possibly nondeterministic partial specification such that the

controlled system is bisimulation equivalent to the specification. This is the same problem

as that studied in Madhusudan and Thiagarajan (2002) except the aforementioned control

requirement is removed.

Most work on supervisory control of discrete event systems (DESs) use strict synchronous

composition (SSC) of the plant and supervisor as a mechanism of control. In SSC, it is required

that the common events occur synchronously, which is a restriction. For example, there is no

a priori reason for a supervisor to synchronously execute all the uncontrollable events that a

plant executes.

Heymann Heymann (1990) proposed a type of interaction, called prioritized synchronous

composition (PSC), which relaxed such synchronization requirements. PSC delegates the ef-

fects of control limitations of a supervisor from its logic part (implemented as an automaton)

to its interface part (implemented as PSC), and thereby, removes the requirement of “com-

pleteness” Kumar et al. (1991) or “Σu-compatibility” Kumar et al. (1991) of a supervisor. In
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PSC, each system possesses an event priority set specifying a set of events whose execution

require its participation. Thus, an event can occur if and only if all the systems having priority

over the event can participate in its execution. In this case, the event occurs synchronously in

all such systems, and otherwise the event gets blocked from occurring. The systems which do

not have priority over the event also participate in its execution if they can, and otherwise the

event takes place without the participation of such systems. Thus, a system with no priority

over an event cannot block its execution. In other words, at a given state of a system, all

executable and all non-priority events are enabled by that system at that state. Supervisory

control of DESs using PSC has been studied in Heymann and Meyer (1991); Balemi (1994);

Fabian (1995); Heymann and Lin (1998); Shayman and Kumar (1995); Kumar and Shayman

(1996a, 1997, 1996b).

PSC models the interaction among systems when all the events are completely observable.

When systems interact under partial observation (modeled as non-identity observation masks),

their interaction through PSC requires that the systems be observation compatible with respect

to their masks Kumar and Shayman (1997). So it is meaningful to generalize the notion of PSC

to allow interaction of systems possessing non-identity observation mask so that the systems

can interact without needing to ensure that they are control or observation compatible.

An effort to generalize PSC in such a direction was presented in Shayman and Kumar

(1999), and the generalization was called masked composition (MC). The notion of process-

objects was introduced and their MC was defined. In MC, each system is associated with

two types of mask function: A control mask that identifies events from the control perspective,

and an observation mask that identifies events from the observation perspective. One difficulty

with that work is the underlying modeling formalism of process objects that contains “virtual

transitions” besides “real” ones, and modeling of practical systems as such process objects is

not quite clear.

Another generalization of PSC to describe prioritized synchronization of systems via in-

terfaces, masked prioritized synchronous composition (MPSC), was introduced by Kumar-

Heymann in Kumar and Heymann (2000b). MPSC was latter used for control with “driven”



www.manaraa.com

6

events in Jiang and Kumar (2002). MPSC retains the basic concept of PSC in that each

system has its own event priority set, i.e., the set of events in which it must participate in

order for them to occur in the composition. In MPSC, each system is allowed to interact with

its environment via interfaces that are modeled as event mask functions. When two or more

systems interact at a common interface, they can synchronize on events that are mapped to

common interface events.

MPSC is appropriate for systems interacting via common interfaces. When MPSC is em-

ployed for control the condition for existence of a supervisor is normality together with control-

lability, as opposed to the usual weaker condition of observability together with controllability.

This suggests that MPSC imposes certain stringent interface constraints. In MPSC, not only

the observations but also the controls are filtered through the interface mask - An event is en-

abled as long as an indistinguishable event is enabled. This makes the control more restrictive

than that of the usual supervisory control setting where control and observation of events are

not inter-dependent. This is the reason for the stronger condition of normality required of a

control specification.

1.2 Proposed Problems

In general, plant, specification, and supervisor all can be nondeterministic. Nondetermin-

istic plant and specification are useful when designing a system at a higher level of abstraction

so that lower level details of system and its specification are omitted to obtain higher level

models that are nondeterministic. Nondeterministic specifications are also meaningful when

the system to be controlled has a nondeterministic model due to lack of information (caused

for example by partial observation or unmodeled dynamics). In this dissertation we study the

control of (nondeterministic) DESs so that the controlled system is bisimulation or simulation

equivalence to (nondeterministic) specifications.

We study a more general bisimulation equivalence control problem, namely, in which both

the plant as well as the specification are nondeterministic. No prior work addresses this prob-

lem in this generality—they impose determinism either on the plant or on the specification.
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To understand the nature of the problem when both the plant and the specification are non-

deterministic, note that even when the specification is the same as the plant (and so trivially

bisimilar to the plant), the specification itself may not be work as a supervisor, for the composi-

tion of two of the same system need not be bisimilar to the system itself. Note this complication

does not arise when either the plant or the specification is deterministic, since in this case if

the plant and the specification are the same (or less generally, the plant can simulate the speci-

fication), the specification itself can be chosen as a supervisor. This is because the composition

of plant and specification will be bisimilar to the specification (when plant is deterministic),

or language equivalent to the specification (when specification is deterministic). In the more

general case, the option of choosing the specification itself as a supervisor is not necessarily

available, which introduces a “new dimension” (added complexity) to the nature of the control

problem.

We show that in the general setting of nondeterministic systems and specifications, the

complexity for bisimilarity enforcing control is doubly exponential and for similarity enforcing

control remains polynomial solvable. So the choice of behavioral equivalence used depends on

the application at hand and there is a trade-off between the expressivity and the complexity.

The high expressivity of bisimulation equivalence and high computational complexity for

bisimilarity enforcing control motivate us seeking specializations which possess more practical

complexity bounds. We identify a specialization when the system model is deterministic. We

show that both existence and synthesis of a bisimilarity enforcing supervisor remains poly-

nomially solvable under complete observation. Further, where there is a partial observation,

the existence condition is polynomially verifiable, whereas the complexity of synthesizing a

supervisor (when one exists) is singly exponential. These complexities are similar to the ones

for control under partial observation in completely deterministic setting Tsitsiklis (1989). An

elaborate computation is required to construct a supervisor. Such a construction (see Algo-

rithm 2) is quite novel and to the best of our knowledge the first in the literature dealing with

supervisory control theory.

We introduce a new interaction/control mechanism for partially observed DESs, namely
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prioritized synchronous composition under mask (PSCM). When MPSC Kumar and Heymann

(2000b) is employed for control the condition for existence of a supervisor is normality to-

gether with controllability, as opposed to the usual weaker condition of observability together

with controllability. This suggests that MPSC imposes certain stringent interface constraints.

This serves as a motivation to introduce PSCM. We show that when PSCM is adopted as

a mechanism of interaction, not only the control & observation-compatibility requirements

are removed of a supervisor, the existence condition for a supervisor such that the controlled

system is language equivalent to a specification is given by achievability that is weaker than

controllability and observability combined. (The weaker condition is required since we allow

supervisors to be nondeterministic.) This suggests that the notion of PSCM introduced in the

dissertation is an appropriate generalization of PSC to account for partial observation. We

study control of (nondeterministic) DESs for achieving bisimulation equivalence specifications

using PSCM as a control mechanism, and establish an equivalence between a PSCM-based

bisimilarity enforcing controller and a SSC-based bisimilarity enforcing controller by showing

that if one of them exists and the other one also exists.

1.3 Dissertation Organization

The dissertation is organized as follows.

In Chapter 2, we present notation and preliminaries. The concepts of automata, simula-

tion relation, bisimulation equivalence, simulation equivalence, synchronous composition, and

prioritized synchronous composition are introduced.

In Chapter 3, we establish that the set of all automata having the same event set endowed

with the simulation relation is a prelattice, and show that synchronization of two automata

gives an infimal element for the two automata, whereas the union of the two automata gives a

supremal element.

In Chapter 4, we present supervisory control for bisimulation equivalence. For control of

nondeterministic plant for bisimulation equivalence, we obtain a small model theorem showing

that a supervisor for enforcing bisimulation equivalence between the specification and the
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controlled system exists if and only if it exists over a certain finite state space. For the

special case of deterministic plants we obtain a necessary and sufficient condition for the

existence of a bisimilarity enforcing supervisor which can be verified polynomially in both

plant and specification states. A stronger notion of controllability, called state-controllability,

is introduced as part of the necessary and sufficient condition for the existence of such a

supervisor.

In Chapter 5, we extend the small model theorem by showing that a control and obser-

vation compatible supervisor for enforcing bisimulation equivalence between the specification

and the controlled system exists if and only if it exists over a certain finite state space. For the

special case of deterministic plants, we introduce new concepts of state-achievability-bisimilar.

We provide polynomial algorithms for verifying state-achievability-bisimilar. While the exis-

tence of a bisimilarity enforcing supervisor can be determined polynomially in both plant and

specification states for deterministic plants, the upper bound for the synthesis we provide is

exponential.

In Chapter 6, we study supervisory control for simulation equivalence. We establish the

polynomial solvability of the simulation equivalence control. The results are further generalized

to the “range” control problem, where the controlled behavior must lie in a range specified

by a lower and an upper bound behavior (ordering is defined by the simulation relation). We

show that our necessary and sufficient condition for the existence of a similarity enforcing

supervisor for deterministic plant specializes to the condition of “state-controllable-similar”,

which is another new concept introduced in this paper.

In Chapter 7, we introduce the concept of prioritized synchronous composition under mask

and studies its properties. We introduce augmentation in the setting of PSCM, and show how

in certain cases, PSCM of systems is equivalent to PSC of their augmentations. We study

PSCM-based supervisory control with no “driven” events for both language equivalence and

bisimulation equivalence.

In Chapter 8, we summarize the results and conclude with suggestions for further research.



www.manaraa.com

10

CHAPTER 2. NOTATION AND PRELIMINARIES

We use finite state machine (or finite automata) to model discrete event systems at the

logical level, and bisimulation or simulation equivalence to describe the behavioral equivalence.

Typically a controller operates under limited control and observation capabilities. So an admis-

sible controller state machine must be control & observation-compatible. This chapter reviews

concepts of finite automata, their compositions, bisimulation and simulation equivalence, and

control & observation-compatibility. The interested reader may consult Hopcroft and Ullman

(1979); Ramadge and Wonham (1989); Milner (1980); Kumar and Garg (1995) for more details.

2.1 Finite Automata

A nondeterministic automaton is a 5-tuple,

G = (X, Σ, α,X0, Xm),

where

• X is the set of states,

• Σ is the alphabet of events,

• α : X ×Σ → 2X is the state transition function, where Σ := Σ∪ {ε} with ε being a label

for “silent” transitions,

• X0 ⊆ X is the set of initial states,

• Xm ⊆ X is the set of final states.

A triple (x, σ, x′) ∈ X ×Σ×X such that x′ ∈ α(x, σ) is called a transition. The automata

is said to be deterministic if its transition function is a partial map α : X ×Σ → X, i.e., if the
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transition function uniquely determines the resulting next state. By entering a marked state,

we record that the system has completed some operation or task. Masked states can be used

to study the issue of blocking in DESs. It is possible for the controlled system to execute a

sequence of events, which cannot be extended to reach a marked state. Thus, the controlled

system may get blocked.

Σ∗ denotes the set of all finite sequences of events in Σ, called event-traces, and includes

the zero length trace, denoted ε. The ε-closure (denoted as ε∗(·)) of x ∈ X is the set of states

reached by the execution of a sequences of ε-transitions from state x. By using ε-closure map,

we can extend the definition of transition function from events to traces, α∗ : X × Σ∗ → 2X ,

which is defined inductively as:

∀x ∈ X,α∗(x, ε) := ε∗(x); ∀s ∈ Σ∗, σ ∈ Σ : α∗(x, sσ) := ε∗(α(α∗(x, s), σ)).

The language generated (resp., marked) by G, is denoted as L(G) (resp., Lm(G)). L(G)

is the sequence of events generated starting from the initial state, i.e., L(G) = {s ∈ Σ∗ |
α∗(X0, s) 6= ∅}, and Lm(G) is the set of generated sequences that end in a marked state, i.e.,

Lm(G) = {s ∈ L(G) | α∗(X0, s) ∩Xm 6= ∅}. For x ∈ X, we define

Σ(x) := {σ ∈ Σ | α(x, σ) 6= ∅} and Σ(x) := Σ(x) ∪ {ε}

to denote the set of all event and labels on which transitions are defined at state x, respectively.

The strict synchronous composition of two automata G1 and G2, where G1 =(X1, Σ,

α1,X01,Xm1) and G2 = (X2, Σ, α2, X02, Xm2), is the automaton

G1‖G2 = (X1 ×X2,Σ, α, X01 ×X02, Xm1 ×Xm2),

where for x1 ∈ X1, x2 ∈ X2, σ ∈ Σ,

α((x1, x2), σ) =





α1(x1, σ)× α2(x2, σ) if σ 6= ε

(α1(x1, ε)× {x2}) ∪ ({x1} × α2(x2, ε)) if σ = ε

We also define the union of G1 and G2 as the automaton

G1 ∪G2 = (X1 ∪X2,Σ, α∪, X01 ∪X02, Xm1 ∪Xm2),
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where for x ∈ X1 ∪X2, and σ ∈ Σ,

α∪(x, σ) =





α1(x, σ) ∪ α2(x, σ) if x ∈ X1 ∩X2

α1(x, σ) if x ∈ X1 −X2

α2(x, σ) if x ∈ X2 −X1

In SSC, it requires that the common events occur synchronously, which is a restriction.

Heymann Heymann (1990) proposed prioritized synchronous composition (PSC), which relaxed

such synchronization requirements. In PSC, each system has an event priority set. An event

can occur as long as all systems having the priority over the event can participate. For i = 1, 2,

consider NSM Gi = (Xi, Σ, αi, X0i) with its event priority set Ai ⊆ Σ. Then the prioritized

synchronous composition of G1 and G2 is given by

G1A1‖A2G2 = (X1 ×X2, Σ, α, X01 ×X02),

where for x1 ∈ X1, x2 ∈ X2 and σ ∈ Σ,

α((x1, x2), σ) :=





α1(x1, σ)× α2(x2, σ), if α1(x1, σ) 6= ∅, α2(x2, σ) 6= ∅
α1(x1, σ)× {x2}, if α1(x1, σ) 6= ∅, α2(x2, σ) = ∅, σ 6∈ A2

{x1} × α2(x2, σ), if α2(x2, σ) 6= ∅, α1(x1, σ) = ∅, σ 6∈ A1

∅, otherwise

α((x1, x2), ε) := (α1(x1, ε)× {x2}) ∪ ({x1} × α2(x2, ε)).

The event priority set of G1A1‖A2G2 is taken to be A1∪A2. In the special case when the event

priority sets of the two systems exhaust the entire event set Σ, PSC can be transformed to

SSC using the method of augmentation introduced in Heymann (1990).

2.2 Bisimulation and Simulation Equivalence

We next introduce the concept of a simulation relation.

Definition 1 Given G1 = (X1,Σ, α1, X01, Xm1), G2 = (X2, Σ, α2, X02, Xm2), a simulation

relation is a binary relation Φ ⊆ X1 ×X2 ⊆ (X1 ∪X2)2 such that (x1, x2) ∈ Φ implies

1. σ ∈ Σ, x′1 ∈ α∗∪(x1, σ) ⇒ ∃x′2 ∈ α∗∪(x2, σ) such that (x′1, x′2) ∈ Φ.
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2. x1 ∈ Xm1 ∪Xm2 ⇒ x2 ∈ Xm1 ∪Xm2.

G1 is said to be simulated by G2, denoted as G1 vΦ G2, if there exists a simulation relation

Φ ⊆ (X1 ∪ X2)2 such that for all x01 ∈ X01, exists x02 ∈ X02 with (x01, x02) ∈ Φ. This last

fact is concisely written as X01 vΦ X02.

We write x1 vΦ x2 to denote that there exists a simulation relation Φ with (x1, x2) ∈ Φ,

read as x1 is simulated by x2. We sometimes omit the subscript Φ from vΦ when it is clear

from the context.

A bisimulation relation is a symmetric simulation relation which is captured by the following

definition.

Definition 2 Given two automata G1 and G2 as defined above, a bisimulation relation is a

binary relation Φ ⊆ (X1 ∪X2)2 such that for x1 ∈ X1, x2 ∈ X2, (x1, x2) ∈ Φ implies

1. σ ∈ Σ, x′1 ∈ α∗∪(x1, σ) ⇒ ∃x′2 ∈ α∗∪(x2, σ) such that (x′1, x′2) ∈ Φ.

2. σ ∈ Σ, x′2 ∈ α∗∪(x2, σ) ⇒ ∃x′1 ∈ α∗∪(x1, σ) such that (x′1, x′2) ∈ Φ.

3. x1 ∈ Xm1 ∪Xm2 ⇒ x2 ∈ Xm1 ∪Xm2.

Further G1 and G2 are said to be bisimulation equivalent (or bisimilar), denoted as G1 'Φ G2,

if Φ is symmetric so that X01 'Φ X02.

We write x1 'Φ x2 to denote that there exists a bisimulation relation Φ with (x1, x2) ∈ Φ,

read as x1 is bisimilar to x2. We sometimes omit the subscript Φ from 'Φ when it is clear

from the context. From the definition of bisimulation relation and simulation relation, we

easily observe that x1 'Φ x2 if and only if x1 vΦ x2, x2 vΦ x1 and Φ is symmetric.

Definition 3 Given two automata G1 and G2, Φ ⊆ (X1 ∪X2)2 is a similarity relation if exist

simulation relations Φ1, Φ2 ⊆ (X1 ∪X2)2 such that Φ = Φ1 ∪ Φ2, and

∀x : [∃x′ : (x, x′) ∈ Φi ⇒ ∃x′′ : (x′′, x) ∈ Φj ], ∀i, j ∈ {1, 2}, i 6= j.

G1 and G2 are simulation equivalent (or similar), denoted G1 ∼Φ G2, if exist simulation

relations Φ1 and Φ2, such that Φ = Φ1 ∪ Φ2 and G1 vΦ1 G2 and G2 vΦ2 G1.
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We write x1 ∼Φ x2 to denote that there exists a similarity relation Φ such that (x1, x2) ∈ Φ,

read as x1 and x2 are simulation equivalent or similar. Note that a similarity relation Φ need not

be an equivalence relation (as it need not be symmetric), however the similarity of automata is

an equivalence relation. Also note that G1 v G2 implies L(G1) ⊆ L(G2), and G1 ' G2 implies

G1 ∼ G2 which in turn implies L(G1) = L(G2).

Remark 1 Existence of simulation relation or simulation or bisimulation equivalence between

a pair of automata G1 and G2 can be checked linearly in the sizes of G1 and G2 Henzinger

et al. (1995).

Next we give examples to illustrate these concepts.

Example 1 Consider two automata G1 and G2 shown in Figure 2.1. Their synchronous

composition G1‖G2 and union G = G1 ∪G2 are shown in Figure 2.2.
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Figure 2.1 G1 (first), G2 (second), G3 (third), and G4 (fourth)

Example 2 Consider automata G2 and G4 shown in Figure 2.1. There exists a simulation

relation Φ1 ⊆ X2 ×X4: Φ1 = {(1′, A′), (2′, B′), (3′, C ′), (4′, E′). Thus G2 vΦ1 G4. Also, there

exists a simulation relation Φ2 ⊆ X4 ×X2: Φ2 = {(A′, 1′), (B′, 2′), (C ′, 3′), (D′, 2′), (E′, 4′)}.
Thus G4 vΦ2 G2. Therefore, there exists a similarity relation Φ = Φ1∪Φ2 such that G2 ∼Φ G4.

However, Φ is not symmetric. So G2 6'Φ G4.

Consider G3 in Figure 2.1 and G′ = G1||G2 in Figure 2.2. There exists a symmetric

simulation relation Φ′ ⊆ (X3 ∪X ′)2 given by,

Φ′ = {(A, 11′), (B, 22′), (C, 23′), (C, 33′), (D, 32′), (E, 44′),

(11′, A), (22′, B), (23′, C), (32′, D), (33′, C), (44′, E)}.
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Therefore, G3 'Φ′ G′.

Note that L(G1) = L(G2) = L(G3) = L(G4). However, G1 6v G2, G2 6v G1, G1 6v G4, and

G4 6v G1.
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Figure 2.2 G1‖G2 (left), G = G1 ∪G2 (middle), and G〈3,2′〉 (right)

Our construction of a bisimilarity enforcing control requires merger of states of a certain

automaton as defined below.

Definition 4 We use G〈x,x′〉 = (X,Σ, α, X0, Xm) to denote G = (X, Σ, α, X0, Xm) in which

two states x, x′ ∈ X are merged. Use 〈x, x′〉 to denote the merger of two states x and x′. Then,

X = (X − {x, x′}) ∪ {〈x, x′〉},

and ∀x̂, x̃ ∈ X − {x, x′}, ∀σ ∈ Σ :

x ∈ α(x̂, σ) in G ⇒ 〈x, x′〉 ∈ α(x̂, σ) in G〈x,x′〉

x′ ∈ α(x̃, σ) in G ⇒ 〈x, x′〉 ∈ α(x̃, σ) in G〈x,x′〉

x̂ ∈ α(x, σ) in G ⇒ x̂ ∈ α(〈x, x′〉, σ) in G〈x,x′〉

x̃ ∈ α(x′, σ) in G ⇒ x̃ ∈ α(〈x, x′〉, σ) in G〈x,x′〉

x̃ ∈ α(x̂, σ) in G ⇒ x̃ ∈ α(x̂, σ) in G〈x,x′〉.

x ∈ α(x′, σ) in G ⇒ 〈x, x′〉 ∈ α(〈x, x′〉, σ) in G〈x,x′〉

x′ ∈ α(x, σ) in G ⇒ 〈x, x′〉 ∈ α(〈x, x′〉, σ) in G〈x,x′〉

Example 3 Consider automaton G in Figure 2.2, the automaton G〈3,2′〉 is drawn in Figure 2.2.
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It is known (see Rutten (1995)) that merger of bisimilar states in an automaton yields a

bisimilar automaton.

Theorem 1 Rutten (1995) Given an automaton G, if x, x′ ∈ X are such that x ' x′, then

G ' G〈x,x′〉.

2.3 Control of Discrete Event Systems

A DES, called a plant, is controlled to restrict it’s behavior so as to prevent any undesirable

behavior by dynamically disabling certain controllable events Ramadge and Wonham (1989).

Such a controller is called a supervisor. The supervisor can be modeled as another automaton

operating in synchronous composition with the plant.

Typically a supervisor operates under limited control and observation capabilities. A limi-

tation in control arises due the presence of uncontrollable events, denoted Σu ⊆ Σ, that cannot

be prevented from occurring. For this reason, an admissible supervisor state machine must

enable all uncontrollable events at all its states, a property known as control-compatibility

or Σu-compatibility. A limitation in observation arises due to the type event-sensors used

which can provide only a partial or no information about the occurrence of an event they

monitor. The sensing capabilities of such event-sensors can be represented as an observation

mask function M : Σ → ∆ that maps events into observations (∆ is the set of observed

symbols) and satisfies M(ε) = ε. M is said to be projection type if ∆ ⊆ Σ and for σ ∈ ∆,

M(σ) = σ. σ ∈ Σ is said to be an unobservable event if M(σ) = ε, and otherwise it is

said to be an observable event. Two events σ1, σ2 ∈ Σ are said to be indistinguishable if

M(σ1) = M(σ2). The observation mask M is extended to be defined over traces in Σ∗ as

follows: M(ε) := ε; ∀s ∈ Σ∗, σ ∈ Σ : M(sσ) := M(s)M(σ). Further the inverse of the mask

function is defined as: ∀τ ∈ ∆∗ : M−1(τ) := {s ∈ Σ∗ | M(s) = τ}.
The notion of control & observation-compatibility or (Σu,M)-compatibility is formally

defined as follows.

Definition 5 Let Σu ⊆ Σ be the set of uncontrollable events and M : Σ → ∆ be the observa-

tion mask, then
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• S = (Y,Σ, β, Y0, Ym) is called Σu-compatible if ∀y ∈ Y and ∀a ∈ Σu, β(y, a) 6= ∅.

• S is called M -compatible if ∀y ∈ Y and ∀a, b ∈ Σ(y), if M(a) = M(b), then β(y, a) =

β(y, b), where it is assumed that a silent transition is implicitly defined as a self-loop.

• S is called (Σu,M)-compatible if S is Σu-compatible and M -compatible.

Unless otherwise stated, we will use G = (X, Σ, α, X0, Xm), R = (Q,Σ, δ,Q0, Qm), and S =

(Y,Σ, β, Y0, Ym) to denote the (deterministic) plant, specification, and supervisor, respectively.

The controlled system will be denoted by G‖S = (X × Y,Σ, γ,X0 × Y0, Xm × Ym).
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CHAPTER 3. PRELATTICE AUTOMATA UNDER SIMULATION

RELATION

In this chapter we show that the simulation relation serves as a preorder for the set of all

automata defined over a common event set, and also that the set of automata defined over a

common event set together with the simulation relation preorder constitutes a prelattice.

Definition 6 Kumar and Garg (1995) Given a set X, a preorder over X, denoted ≤⊆ X2,

is a transitive and reflexive relation, in which case the pair (X,≤) is called a preordered set.

Given Y ⊆ X, x ∈ X is said to be a supremal of Y if

• (upper bound): ∀y ∈ Y : y ≤ x, and

• (least upper bound): ∀z ∈ X : [∀y ∈ Y : y ≤ z] ⇒ [x ≤ z].

Similarly, x ∈ X is called an infimal of Y ⊆ X if

• (lower bound): ∀y ∈ Y : x ≤ y, and

• (greatest lower bound): ∀z ∈ X : [∀y ∈ Y : z ≤ y] ⇒ [z ≤ x].

Note that supremal and infimal when defined with respect to a preordered are not unique.

However if x1 and x2 are two supremal or infimal elements of Y , then it holds that x1 ≤ x2

and x2 ≤ x1. Since a preorder is not antisymmetric we cannot claim that x1 = x2, and so the

uniqueness of supremal/infimal does not hold. We denote the set of all supremals and infimals

of Y by SUP (Y ) and INF (Y ), respectively.

Definition 7 Kumar and Garg (1995) A preordered set (X,≤) is said to be a prelattice if

SUP (Y ) ∩ X 6= ∅, and INF (Y ) ∩ X 6= ∅ for any finite Y ⊆ X. It is said to be a complete

prelattice if the same holds for any Y ⊆ X.
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3.1 Prelattice Automata under Simulation Relation

We next consider the set of all automata A over a fixed alphabet Σ and the simulation

relation over this set. It is known that the simulation relation is transitive, i.e., given automata

G1, G2 and G3, if G1 v G2 and G2 v G3, then G1 v G3. Also, for any automaton G, it holds

that G v G, implying the reflexivity of the simulation relation. However G1 v G2 and G2 v G1

only implies G1 ∼ G2 but not G1 = G2, i.e., antisymmetry does not hold. Therefore, the pair

(A,v) is a preordered set.

In the following we establish that the automata-union (resp., automata-synchronization)

yields a supremal (resp., an infimal) element.

Theorem 2 Given G1 and G2, G1 ∪G2 ∈ SUP{G1, G2}.

Proof: From the definition of automata union, G1 and G2 are “subautomata” of G1 ∪G2 and

so it is easy to see that G1 v G1 ∪G2 and G2 v G1 ∪G2, i.e., G1 ∪G2 is an upper bound for

{G1, G2}. Next, we show that it is a least upper bound, i.e., G1 v G3 and G2 v G3 implies

(G1 ∪G2) v G3.

Notice that G1 v G3 implies X01 v X03 and G2 v G3 implies X02 v X03. This implies for

i = 1, 2, for each x0i ∈ X0i exists x03 ∈ X03 such that x0i v x03. Since the set of transitions of

G1 ∪ G2 is the union of the set of transitions of the two automata, this implies that for each

x ∈ X01 ∪X02, there exists x03 ∈ X03, such that x v x03. Since the initial state set of G1 ∪G2

is X01 ∪X02, it follows that (G1 ∪G2) v G.

Theorem 3 Given G1 and G2, G1‖G2 ∈ INF{G1, G2}.

Proof: We first prove that G1‖G2 is a lower bound, i.e., G1‖G2 vΦ1 G1 and G1‖G2 vΦ2 G2.

By the reflexivity property of simulation relation, there exists Φ such that G1‖G2 vΦ G1‖G2.

Define a simulation relation Φ1 by

Φ1 = {((x1, x2), x′1) | ((x1, x2), (x′1, x
′
2)) ∈ Φ}.

Then it can be seen that Φ1 is a simulation relation, and so G1‖G2 vΦ1 G1. Similarly, we can

show G1‖G2 vΦ2 G2.
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Next, we prove that G1‖G2 is a greatest lower bound, i.e., G3 vΦ1 G1 and G3 vΦ2 G2

implies G3 vΦ G1‖G2. In order to show G3 vΦ (G1‖G2), define

Φ := {(x3, (x1, x2)) | (x3, x1) ∈ Φ1, (x3, x2) ∈ Φ2,∃s ∈ Σ∗, s.t. xi ∈ α∗i (X0i, s),∀i = 1, 2, 3}.

G3 vΦi Gi implies X03 vΦi X0i for i = 1, 2. Since G3 vΦi Gi, it follows that L(G3) ⊆ L(Gi),

this further implies L(G3) ⊆ L(G1) ∩ L(G2) = L(G1‖G2). This means for every x3 ∈ X3

such that there exists s ∈ Σ∗ with x3 ∈ α∗3(X03, s), exists xi ∈ Xi, such that xi ∈ α∗i (X0i, s)

for i = 1, 2. So Φ above is well defined and serves as a simulation relation for establishing

G3 vΦ G1‖G2.

The following corollary follows from Theorem 3 and provides a property of simulation order.

Corollary 1 Given automata G1, G2, G3, G3 v G1‖G2 implies G3 vΦ1 G1 and G3 vΦ2 G2.

3.2 Conclusion

We established that the set of all automata having the same event set endowed with the

simulation relation is a prelattice, and showed that synchronization of two automata gives an

infimal element for the two automata, whereas the union of the two automata gives a supremal

element.
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CHAPTER 4. SUPERVISORY CONTROL FOR BISIMULATION

EQUIVALENCE

In this chapter, we study the control of DESs to ensure bisimilarity of the controlled system

and a given specification. For the control of nondeterministic plant for bisimulation equiva-

lence, we obtain a small model theorem showing that a supervisor for enforcing bisimulation

equivalence between the specification and the controlled system exists if and only if it exists

over a certain finite state space. For the special case of deterministic plants we obtain a neces-

sary and sufficient condition for the existence of a bisimilarity enforcing supervisor which can

be verified polynomially in both plant and specification states. A stronger notion of controlla-

bility, called state-controllability, is introduced as part of the necessary and sufficient condition

for the existence of such a supervisor.

4.1 A Motivating Example

We give an example to illustrate some of the issues that are prevalent when controlling a

nondeterministic system.

Example 4 Consider an automatic check-out scanner in a shopping center, a state machine

model G of which is shown in Figure 4.1. Initially, a customer presses the start button to start

the check-out process. Then it scans an item, upon which, owing to a malfunction, the scanner

nondeterministically transitions to one of two states. In the first state, the scanner allows the

customer to either put the item in a bag, or cancel; whereas in the second state the only option

offered is to put the item in the bag. Not giving an option to cancel in the second state is

unacceptable. A reset button may be pressed in either of the states to return to the first state.

After this, the scanner waits for either a request for a next item, or if there is no more items
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then a request to pay. In the latter case, scanner returns to its initial state, and in the former

case it goes back to the state from where check-out process resumes. Since a customer must

pay at the end of the check-out process, the event “pay” is deemed uncontrollable. All other

events are controllable.

The partial specification R, also shown in Figure 4.1, is given in order to restrict the plant

to exhibit only an acceptable behavior. According to the specification, after start and scan,

two possible states may be reached nondeterministically. In both states, cancel is an available

option which is what we desire of the scanner, while put is an additional option at the first

state. The rest of the behavior is the same as the one feasible in the scanner. Note that

the “reset” event does not appear in the specification state machine since an occurrence or

non-occurrence of it is immaterial to the specification. This implies that the specification R is

for the plant G projected on to the event set Σ̂ := Σ− {reset}, denoted G↑Σ̂. (Projecting an

automaton onto Σ̂ replaces each event label outside Σ̂ of the automaton by ε.)
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Figure 4.1 Plant G (left) and specification R (right)

Note that L(R) = L(G↑Σ̂), i.e., G↑Σ̂ is language equivalent to R. Thus if we use language

equivalence as a notion of behavioral equivalence, then there is no need to control. However, as

mentioned above, G can exhibit some behavior that is not acceptable (i.e., not always giving

the option to cancel after scan). We develop a theory in this paper that lets us design a

supervisor S such that (G‖S)↑Σ̂ is bisimilar to R.
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4.2 Control of Nondeterministic Plant for Bisimilarity

Before we give the main result of this section, we first give some preliminary results.

Lemma 1 For G, S, and R defined as above, consider x ∈ X, y ∈ Y, q ∈ Q.

1. If q vΦ (x, y), then q vΦ′ x and q vΦ′′ y.

2. If q vΦ′ x and q vΦ′′ y, then q vΦ (x, y).

Proof:

1. q vΦ (x, y) implies there exists a simulation relation Φ such that (q, (x, y)) ∈ Φ. Also

any pair (q′, (x′, y′)) ∈ Φ implies

σ ∈ Σ, q′σ ∈ δ∗(q′, σ) ⇒ ∃(x′σ, y′σ) ∈ γ∗((x′, y′), σ) and (q′σ, (x′σ, y′σ)) ∈ Φ.

q′ ∈ Qm ⇒ (x′, y′) ∈ Xm × Ym.

By definition of SSC,

σ ∈ Σ, (x′σ, y′σ) ∈ γ∗((x′, y′), σ) ⇒ x′σ ∈ α∗(x′, σ),

(x′, y′) ∈ Xm × Ym ⇒ x′ ∈ Xm.

Define a relation Φ′ = {(q′, x′) | (q′, (x′, y′)) ∈ Φ}. Then (q′, x′) ∈ Φ′ implies,

σ ∈ Σ, q′σ ∈ δ∗(q′, σ) ⇒ ∃x′σ ∈ α∗(x′, σ) such that (q′σ, x′σ) ∈ Φ′.

q′ ∈ Qm ⇒ x′ ∈ Xm.

Clearly, Φ′ is simulation relation. By Definition 1, q vΦ′ x. Similarly, we can prove

q vΦ′′ y.

2. q vΦ′ x implies there exists a simulation relation Φ′ with (q, x) ∈ Φ′. Also for any pair

(q′, x′) ∈ Φ′,

σ ∈ Σ, q′σ ∈ δ∗(q′, σ) ⇒ ∃x′σ ∈ α∗(x′, σ) such that (q′σ, x′σ) ∈ Φ′.

q′ ∈ Qm ⇒ x′ ∈ Xm.
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Similarly, q vΦ′′ y implies there exists a simulation relation Φ′′ with (q, y) ∈ Φ′′. Also

for any pair (q′, y′) ∈ Φ′′,

σ ∈ Σ, q′σ ∈ δ∗(q′, σ) ⇒ ∃y′σ ∈ β∗(y′, σ) such that (q′σ, y′σ) ∈ Φ′′.

q′ ∈ Qm ⇒ y′ ∈ Ym.

Define a relation Φ = {(q′, (x′, y′)) | (q′, x′) ∈ Φ′ and (q′, y′) ∈ Φ′′}. Then (q′, (x′, y′)) ∈ Φ

implies ∀σ ∈ Σ, ∀q′σ ∈ δ∗(q′, σ),

∃(x′σ, y′σ) ∈ α∗(x′, σ)× β∗(y′, σ) such that (q′σ, (x′σ, y′σ)) ∈ Φ.

q′ ∈ Qm ⇒ (x′, y′) ∈ Xm × Ym.

Thus, q vΦ (x, y).

The following corollary follows from Lemma 1 and serves as a necessary condition for the

existence of a supervisor for enforcing bisimulation equivalence.

Corollary 2 Given G,R and S, if G‖S ' R, then R v G.

Proof: G‖S ' R implies R v G‖S. By Definition 1, Q0 v (X0, Y0). By Lemma 1, Q0 v X0.

Then by Definition 1, R v G.

Remark 2 For a deterministic G and any R, it can be verified that R v G is equivalent to

L(R) ⊆ L(G) and Lm(R) ⊆ Lm(G).

Next, we present our main result on existence of supervisor S for plant G such that G‖S
is bisimilar to specification R.

Theorem 4 Given nondeterministic G and R, there exists a Σu-compatible supervisor S such

that G‖S ' R if and only if there exists a Σu-compatible automaton T with state space 2X×Q

such that G‖T ' R.

Proof: (Only if) Given G, R, and S such that G‖S ' R, we construct a Σu-compatible T such

that G‖T ' R and state space of T is 2X×Q. We assume without loss of generality that all

transitions of S participate in the composition with G. If a transition of S never participates in
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G‖S, then we can remove this transition from S, and call the result as 〈S〉. Then G‖〈S〉 = G‖S
and every transition of 〈S〉 participates in the composed automaton G‖〈S〉. We compute T

from G, R and S as follows:

1. For y ∈ Y , we define

Xsyn(y) := {x ∈ X | ∃s ∈ Σ∗, x ∈ α∗(X0, s) and y ∈ β∗(Y0, s)},

to be the states in G that are reachable by a same trace as is the state y of S. In other

words, x ∈ Xsyn(y) if and only if (x, y) is a reachable state in G‖S. Since G‖S ' R, each

such state (x, y) is bisimilar to some state q ∈ Q. Collection of all such states is denoted

as Qsim(y), i.e.,

Qsim(y) := {q ∈ Q | ∃x ∈ Xsyn(y), (x, y) ' q}.

2. Label each state y of S by lbl(y) ⊆ X × Q, such that (x, q) ∈ lbl(y) if and only if

x ∈ Xsyn(y), q ∈ Qsim(y) and (x, y) ' q.

3. Define [S]0 := S. For k ≥ 0, [S]k+1 is obtained by merging two states of [S]k carrying

the same label, stop when [S]k = [S]k+1 =: [S].

Define T to be [S]. Then each state of T carries a unique label that is an element of 2X×Q,

and so the state space of T can be thought to be 2X×Q. Next we prove that G‖[S] ' R by

induction on the number of mergers.

Base case : [S]0 = S. So G‖[S]0 = G‖S ' R.

Induction step: Suppose at step k, G‖[S]k ' R. Denote the state of [S]k as y(k) with label

lbl(y(k)). At step k + 1 of merging, suppose we merge y(k), y′(k), where lbl(y(k)) = lbl(y′(k)).

Now we prove G‖[S]k+1 ' G‖[S]k. Merging y(k) and y′(k) causes the merger of states (x, y(k))

and (x, y′(k)) of G‖[S]k for all x ∈ Xsyn(y(k)). Define automata P1, ...P|Xsyn(y(k))| as follows:

1. n := 0, Pn := G‖[S]k, Xn := Xsyn(y(k)).

2. If Xn 6= ∅, then Pn+1 := Pn〈(x,y(k)),(x,y′(k))〉
, where x ∈ Xn, Xn+1 := Xn − {x}, n := n + 1;

else stop, and G‖[S]k+1 = Pn.
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Since lbl(y(k)) = lbl(y′(k)), it follows that both (x, y(k)) and (x, y′(k)) are bisimilar to same state

of Q, i.e., (x, y(k)) ' (x, y′(k)). From the repeated application of Theorem 1 it follows that

G‖[S]k = P0 ' P1 ' ... ' Pn = G‖[S]k+1. This proves the induction step. It remains to show

that [S] is Σu-compatible. Since S is Σu-compatible, and since Σu-compatibility is preserved

under state mergers, [S] = T is Σu-compatible.

(If:) The result follows by letting S := T .

Remark 3 Note that G1 ' G2 implies G1 is trim (a marked state can be reached from every

reachable state) if and only if G2 is trim. So bisimilarity of controlled system and specification

implies that the supervisor is nonblocking if and only if the specification automaton is trim.

In other words, requiring a bisimilarity enforcing supervisor to be nonblocking is equivalent

to requiring that the supervisor be bisimilarity enforcing and specification be trim. Thus

there is no need to separately study nonblocking control in context of bisimulation equivalence

specification (all that is needed is the specification automaton be trim).

Remark 4 From Theorem 4, an exhaustive search can be performed to determine the exis-

tence of a supervisor S over the state space 2X×Q, the complexity of which is O(22|X|×|Q|).

Since there may exist more systematic ways of searching for a desired S, the tightness of the

upper bound complexity remains open.

In the following example, we illustrate the computation of T through labeling states of S

by lbl(·) ∈ 2X×Q as in the proof of Theorem 4. Next we also show that labeling states of S

just by Qsim(·) ∈ 2Q and using such labels to perform mergers of the states of S can yield a

[S] for which G‖[S] ' R need not hold. This example illustrates that it may not be possible to

replace the labeling function lbl(·) used in the proof of Theorem 4 by something simpler such

as Qsim(·).

Example 5 Consider nondeterministic G and S as shown in Figure 4.2.

G‖S and R are shown in Figure 4.3, and we can easily see that G‖S ' R. By step 1, we

compute Xsyn(y):

Xsyn(y0) = {x0}, Xsyn(y1) = {x2, x3}, Xsyn(y2) = {x3, x4},
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Figure 4.2 Plant G (left) and supervisor S (right)

Xsyn(y3) = {x1, x6}, Xsyn(y5) = {x5, x7}, Xsyn(y4) = {x8}.

Since

(x0, y0) ' q0, (x2, y1) ' q2, (x3, y1) ' q3, (x3, y2) ' q3, (x4, y2) ' q2,

(x1, y3) ' q1, (x6, y3) ' q5, (x8, y4) ' q5, (x5, y5) ' q4, (x7, y5) ' q5

Qsim(y) is computed as:

Qsim(y0) = {q0}, Qsim(y1) = {q2, q3}, Qsim(y2) = {q2, q3},

Qsim(y3) = {q1, q5}, Qsim(y4) = {q5}, Qsim(y5) = {q4, q5}.

Then by step 2, label of each y is given by:

lbl(y0) = {(x0, q0)}, lbl(y1) = {(x2, q2), (x3, q3)}, lbl(y2) = {(x3, q3), (x4, q2)},

lbl(y3) = {(x1, q1), (x6, q5)}, lbl(y4) = {(x8, q5)}, lbl(y5) = {(x5, q4), (x7, q5)}.

No states can be merged since no states have the same label, so step 3 simply yields T = S.

In contrast, if we label each y of S by Qsim(y), and merge two states y and y′ having the

same label, then since Qsim(y1) = Qsim(y2), we merge y1 and y2. The resulting state machine

[S] is shown in Figure 4.4. The synchronous composition G‖[S] is shown in Figure 4.4. It can
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be seen that G‖[S] 6' R, since the states (x2, 〈y1, y2〉) and (x4, 〈y1, y2〉) of G‖[S] are bisimilar

to no state of R.

Now we revisit the motivating example.

Example 6 We need to find a Σu-compatible supervisor S such that (G‖S)↑Σ̂ ' R, where

Σ̂ = Σ − {reset}. Such a supervisor S is shown in Figure 4.5. The synchronous composition

of G and S is drawn in Figure 4.6. The following bisimulation relation Φ exists between
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Figure 4.5 Supervisor S (left) and labeling of its states (right)

(G‖S)↑Σ̂ and R:

Φ = {(x0y0, q0), (x1y1, q1), (x2y2, q2), (x2y3, q3), (x3y2, q2), (x3y3, q3),

(x2y4, q2), (x2y5, q3), (x4y6, q4), (q0, x0y0), (q1, x1y1), (q2, x2y2),

(q2, x3y2), (q3, x2y3), (q3, x3y3), (q2, x2y4), (q3, x2y5), (q4, x4y6)}.

Thus, the controlled system is bisimilar to the specification with respect to Σ̂. States in

S can be labeled by elements of 2X×Q as guaranteed by Theorem 4 (shown in Figure 4.5). A

state (x, q) ∈ X × Q belongs to the label of a state y ∈ Y of S if (x, y) appears in G‖S (i.e.,

exists a common trace from x0 to x in G and from y0 to y in S so (x, y) is a reachable state
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of G‖S), and (x, y) is bisimilar to state q of R. All states of S with identical labels may be

merged to obtain the state machine T stated in Theorem 4. T is same as S in this case, and

so G‖T = G‖S.
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Figure 4.6 Controlled system (G‖S)↑Σ̂

4.3 Specialization to Deterministic Plant

In the earlier sections, we studied the supervisory control problem for enforcing bisimilarity

in the setting of nondeterministic plants. In this section, we study the specialized case when

plant is deterministic and specification is (possibly) nondeterministic and show that now the

problem can be polynomially solved.

4.3.1 State-Controllability

In the deterministic setting, the controllability of specification language L(R) with respect

to plant language L(G) and uncontrollable event set Σu is defined as:

L(R)Σu ∩ L(G) ⊆ L(R).

This definition of “language-controllability” requires the following extension to the nondeter-

ministic setting where instead of language models, automata models are used for plant and
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specification.

Definition 8 Given plant G and an automaton G′ = (X ′, Σ, α′, X ′
0) with L(G′) ⊆ L(G), we

say G′ is state-controllable with respect to G and Σu if

s ∈ L(G′), σ ∈ Σu such that sσ ∈ L(G) ⇒ ∀x′ ∈ α′∗(X ′
0, s), σ ∈ Σ(x′).

G′ is state-controllable with respect to G if for trace s in L(G′) and uncontrollable event

σ defined at some state reachable by s in G, σ is defined at all states reachable by s in G′.

Clearly, state-controllability implies language-controllability; the converse need not hold.

Remark 5 In contrast, the language-controllability requires the following:

s ∈ L(G′), σ ∈ Σu such that sσ ∈ L(G) ⇒ ∃x′ ∈ α′∗(X ′
0, s), σ ∈ Σ(x′).

It is clear that when G′ is deterministic, state-controllability of G′ with respect to G and

Σu reduces to language-controllability of L(G′) with respect to L(G) and Σu. So when G′

is deterministic, we can simply use the term controllability, dropping the prefix “state” or

“language”.

It is clear that Σu-compatibility implies state-controllability, i.e., the latter is a weaker no-

tion. On the other hand, a state-controllable automaton can be converted to a Σu-compatible

one without altering the controlled behavior. The following lemma establishes a type of equiv-

alence between Σu-compatibility and state-controllability.

Lemma 2 Suppose S is state-controllable with respect to G and Σu. Define S′ as S augmented

with self-loops at each state on undefined uncontrollable events at the state. Then S′ is Σu-

compatible and G‖S ' G‖S′.

Proof: Since S is state-controllable, for any state (x, y) of G‖S such that x has uncontrollable

events defined, S also has those events defined at y. Therefore, adding self-loops at each state

on undefined uncontrollable events in S does not change the result of synchronous composition.

It follows that G‖S = G‖S′. Thus G‖S ' G‖S′.
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It is known that language-controllability is closed under intersection for prefix-closed lan-

guages. We prove that state-controllability is also preserved under synchronous composition

of automata.

Lemma 3 Suppose G1 and G2 are state-controllable with respect to G and Σu. Then so is

G1‖G2.

Proof: Pick s ∈ L(G1‖G2) = L(G1) ∩ L(G2), and σ ∈ Σu such that sσ ∈ L(G). Let (x1, x2)

be a state reached by execution of s in G1‖G2. Then for i = 1, 2, from state-controllability of

Gi, σ is defined at xi in Gi. So σ is defined at (x1, x2) of G1‖G2. This completes the proof.

4.3.2 Test for State-Controllability

We present below an algorithm of polynomial complexity for verifying state-controllability

of an automaton G′ with respect to a plant G.

Algorithm 1 Algorithm for testing state-controllability of G′ = (X ′,Σ, α′, X ′
0) with respect

to G = (X,Σ, α, X0).

1. Construct G
′ by augmenting G′ with a new state called dump, and by adding transitions

at each state of G′ on each undefined uncontrollable event at that state to the dump

state, i.e., G
′ = (X ′ ∪ {dump}, Σ, α′, X ′

0), where

∀x′ ∈ X ′, σ ∈ Σ : α′(x′, σ) =





α′(x′, σ) if σ ∈ Σ(x′)

dump if σ ∈ Σu − Σ(x′)

2. Obtain G‖G′.

3. G′ is state-controllable with respect to G if and only if there does not exist x ∈ X such

that (x, dump) is reachable in G‖G′.

The following lemma is needed in order to prove Algorithm 1.

Lemma 4 G′ is state-controllable with respect to G if and only if

∀x′ ∈ X ′, ∀x ∈ Xsyn(x′) : Σ(x) ∩ Σu ⊆ Σ(x′) ∩ Σu. (4.1)
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Proof: (If) For each state q ∈ Q of R define Xsyn(q) ⊆ X to be the set of states of G that are

reachable by a common trace, i.e.,

Xsyn(q) := {x ∈ X | ∃s ∈ L(R) ∩ L(G) s.t. q ∈ δ∗(Q0, s), and x ∈ α∗(X0, s)}.

Pick s ∈ L(R), x ∈ α∗(X0, s) such that σ ∈ Σ(x)∩Σu. Then for any q ∈ δ∗(Q0, s), x ∈ Xsyn(q)

and so from hypothesis, σ ∈ Σ(q) ∩ Σu. It follows that R is state-controllable with respect to

G.

(Only If) Pick q ∈ Q, x ∈ Xsyn(q), σ ∈ Σ(x) ∩ Σu. It suffices to show that σ ∈ Σ(q).

Since x ∈ Xsyn(q), exists s ∈ L(R) such that q ∈ δ∗(Q0, s) and x ∈ α∗(X0, s). Then from

state-controllability, σ ∈ Σ(q).

The following theorem establishes the correctness of Algorithm 1.

Theorem 5 Algorithm 1 is correct.

Proof: Let (x, x′) ∈ X ×X ′ be a state reachable in G‖G′. Then it is obvious that (x, x′) ∈
Xsyn(x′) × {x′}, and so for state-controllability to hold, Σ(x) ∩ Σu ⊆ Σ(x′) ∩ Σu must hold.

On the other hand, if this condition is violated, i.e., if exists σ ∈ Σ(x) ∩ Σu − Σ(x′), then a

transition (x, σ, x) for some x ∈ X is defined in G and the transition (x′, σ, dump) is defined in

G
′. So the transition ((x, x′), σ, (x, dump)) is defined in G‖G′. It follows that a state (x, dump)

is reachable in G‖G′ if and only if G′ is not state-controllable with respect to G.

Remark 6 Since G and G′ are nondeterministic, their number of transitions is O(|X|2) and

O(|X ′|2) respectively. So the complexity of constructing G‖G′ is O(|X|2 × |X ′|2), and the

complexity of checking the reachability of (·, dump) in G‖G′ is also O(|X|2 × |X ′|2). So the

complexity of the algorithm for testing state-controllability of G′ with respect to G is O(|X|2×
|X ′|2), i.e., it is quadratic in the number of states of both G and G′ (equivalently, linear in size

of G and G′).

Example 7 Consider the automata G1 and G2 shown in Figure 4.7. Then following the

definition of the state-controllability, it is obvious that G2 is not state-controllable with respect

to G1 (a ∈ L(G1) ∩L(G2), ac ∈ L(G1), but c is not defined at y1, one of the states reached by

the execution of a in G2).



www.manaraa.com

34

Now we verify the state-controllability of G2 with respect to G1 by our algorithm. The

constructed G2 and G1‖G2 are depicted in Figure 4.7. It can be seen that the state (4, dump) is

reachable in G1‖G2. Thus, from Algorithm 1, G2 is not state-controllable with respect to G1. It

should be noted that L(G1) = L(G2) = pr(ab+ac+ad), and so L(G2) is language-controllable

with respect to L(G1).
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Figure 4.7 G1 (first), G2 (second), G2 (third), and G1‖G2 (forth)

4.3.3 Control of Deterministic Plant for Bisimilarity

Suppose exists Σu-compatible S such that G‖S ' R. Due to Σu-compatibility of S, we find

that G‖S is state-controllable. The bisimilarity of R with G‖S however does not guarantee

the state-controllability of R since as shown by the following example the state-controllability

may not be preserved under the bisimilarity.

Example 8 Consider the plant G and two specifications R1 and R2 shown in Figure 4.8. Let

Σu = {b}. It can be verified that R1 ' R2, and R2 is state-controllable with respect to G.

However, R1 is not state-controllable since in G, b ∈ Σu is defined after ε ∈ L(R), but in R, b

is not defined at state 1 ∈ δ∗(1, ε).

The reason for the non-preservation of the state-controllability under bisimulation is the

non-preservation of the set of events defined at a pair of bisimilar states. In the following, we

introduce the notion of R∗ which is the NSM R with its states renamed and transition function

δ replaced by δ∗. We show that R∗ possesses the properties that R∗ ' R and further, if R is

state-controllable then R∗ remains state-controllable.
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Definition 9 Given R = (Q,Σ, δ,Q0, Qm), we define R∗ = (Q∗, Σ, δ∗, Q∗
0, Q

∗
m), where

• Q∗ := {q∗ | q ∈ Q},

• ∀q∗ ∈ Q∗:

δ∗(q∗, ε) := ε∗(q), δ∗(q∗, σ) := ε∗(δ(ε∗(q), σ)),

• Q∗
0 := {q∗ | q ∈ Q0}, and

• Q∗
m := {q∗ | q ∈ Qm}.

Note that in the absence of ε-transitions, R∗ = R.

Figure 4.8 shows an example illustrating Definition 9.
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Figure 4.8 G (first), R1 (second), R2 (third), and R∗
2 (fourth)

Since the definition of bisimilarity between two NSMs Gi = (Xi, Σ, αi, X0i, Xmi) (i = 1, 2)

depends on the transition function α∗i (and not αi), it is obvious that any two NSMs R and

R∗ are bisimilar. This and another property is summarized in the following lemma.

Lemma 5 Consider NSMs R and R∗. Then

1. R ' R∗.

2. ∀q ∈ Q: Σ(q) ⊆ Σ(q∗).

Proof:

1. It is easy to see that we can pick Φ := {(q, q∗), (q∗, q) | q ∈ Q} to establish R ' R∗.

2. Follows from the fact that δ(q, σ) ⊆ δ∗(q∗, σ) for all q ∈ Q and σ ∈ Σ.
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Prior to obtaining the main result of this section, we need to prove the following lemmas.

Lemma 6 Given a deterministic plant G, a possibly nondeterministic R, if R v G, then

G‖R ' R.

Proof: Choose

Φ := {((x, q), q), (q, (x, q))|(x, q) state in G||R s.t. q v x}.

Since R v G, L(R) ⊆ L(G), and so for each s ∈ L(R) and q ∈ δ∗(Q0, s), exists singleton

{x} = α∗(X0, s) such that q v x. So for each q ∈ Q, exists a unique x ∈ X such that

((x, q), q) ∈ Φ. Since Φ is symmetric, it suffices to show that it is a simulation relation. Pick

(q, (x, q)) ∈ Φ and σ-successor q′ ∈ δ∗(q, σ) for some σ ∈ Σ. Since q v x, there exists x′ such

that {x′} = α(x, σ), q′ v x′ and (x′, q′) is a state in G||R. It follows that (q′, (x′, q′)) ∈ Φ.

Similarly, pick ((x, q), q) ∈ Φ and σ-successor (x′, q′) ∈ α∗(x, σ) × δ∗(q, σ) for some σ ∈ Σ.

Then (x′, q′) is a state in G‖R. Also since x′ ∈ α∗(x, σ) is unique and q v x, q′ v x′. It follows

that ((x′, q′), q′) ∈ Φ as desired.

Further if q is marked, q v x implies that x is marked. I.e., if q is marked, then (x, q) is

marked. Moreover, if q is not marked, then (x, q) is not marked. So, for x ∈ X, q ∈ Q such

that q v x, (x, q) ∈ Xm ×Qm ⇔ q ∈ Qm.

Finally, R v G implies Q0 v X0, which further implies ((x0, q0), q0), (q0, (x0, q0)) ∈ Φ for

q0 ∈ Q0 and x0 ∈ X0. Thus, by definition of bisimulation equivalence, G‖R ' R.

Lemma 7 For two bisimilar automata R1 ' R2, if R1 is state-controllable with respect to G,

then R∗
2 is state-controllable with respect to G.

Proof: Since R1 is state-controllable, from Lemma 4, q1 ∈ δ∗1(Q01, s) and x ∈ Xsyn(q1) implies

Σ(x) ∩ Σu ⊆ Σ(q1) ∩ Σu. (4.2)

To prove that R∗
2 is state-controllable with respect to G, it suffices to show that for each state

q∗2 of R∗
2 and for each x ∈ Xsyn(q∗2) it holds that

Σ(x) ∩ Σu ⊆ Σ(q∗2) ∩ Σu.
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Since (4.2) holds, it suffices to show that Σ(q1) ⊆ Σ(q∗2). Since x ∈ Xsyn(q∗2), exists a trace

s ∈ L(R∗
2) such that q∗2 ∈ δ∗2(Q02, s) and x ∈ α∗(X0, s). Bisimilarity of R1 and R2 implies

R1 ' R∗
2 (from Lemma 5). From the fact that R1 ' R∗

2 (which is equivalent to Q01 ' Q∗
02),

we know s ∈ L(R1) = L(R∗
2) and exists a state q1 ∈ δ∗1(Q01, s) such that q1 ' q∗2 (obtained

by inductively extending the definition of bisimulation equivalence from one step to multiple

steps).

From Lemma 5, R1 ' R2 implies R∗
1 ' R∗

2. Since

Σ(q∗i ) = {σ ∈ Σ | δ∗i (q∗i , σ) 6= ∅}(i = 1, 2),

R∗
1 ' R∗

2 implies Σ(q∗1) = Σ(q∗2). From Lemma 5, Σ(q1) ⊆ Σ(q∗1) and so we have Σ(q1) ⊆ Σ(q∗2)

as desired.

The following lemma holds for a deterministic plant but not in general.

Lemma 8 Let G be a deterministic plant, and S be a Σu-compatible supervisor. Then G‖S
is state-controllable.

Proof: To prove state-controllability of G‖S with respect to G, we apply the test of Algo-

rithm 1 to G‖(G‖S). Since G is deterministic if a state (x, (x′, y)) is reached in G‖(G‖S), then

x = x′. We claim that there does not exist a state (x, (x, y)) reachable in G‖(G‖S) from where

a state (·, dump) in G‖(G‖S) can be reached. For this to hold, every uncontrollable event

defined at x in G must also be defined at (x, y) in G‖S, i.e., we need to show that Σ(x) ∩ Σu

is a subset of Σ(x, y) ∩ Σu. This follows since

Σ(x) ∩ Σu = Σ(x) ∩ Σ(y) ∩ Σu = Σ(x, y) ∩ Σu,

where in the first equality we have used the Σu-compatibility of S, which implies Σu ⊆ Σ(y).

This completes the proof.

Now we are ready to present a necessary and sufficient condition for the existence of a

bisimilarity enforcing supervisor for a deterministic plant.

Theorem 6 Given a deterministic plant G and a possibly nondeterministic specification R,

there exists a Σu-compatible supervisor S such that G‖S ∼ R if and only if R v G and R∗ is

state-controllable.
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Proof: (If) Choose S = R∗
u (where R∗

u is obtained by adding in R∗ self-loops at each state

on undefined uncontrollable events). Then S is Σu-compatible. Also from Lemma 2, G||S =

G||R∗
u = G||R∗. Further since R∗ v G (since R∗ ' R and R v G), and G is deterministic,

from Lemma 6, G||R∗ ' R∗. And so G||S = G‖R∗ ' R∗ ' R.

(Only if) Since S is Σu-compatible, from Lemma 8, G||S is state-controllable. Also since

R ' G||S, it follows from Lemma 7 that R∗ is state-controllable. Also since G||S ' R,

R v G||S, which implies that R v G. This completes the proof.

Remark 7 The statement of Theorem 6 above is a slight refinement of the one appearing in

the conference version of the paper (Zhou et al., 2004, Theorem 4). The two statements are

identical when there are no ε-transitions (so that R∗ = R).

Remark 8 From Theorem 6, the complexity of checking the existence of a supervisor for

enforcing bisimilarity for a deterministic plant is O(|X| × |Q|2), which is linear in the sizes

of the plant and the specification. Moreover, when the existence conditions are satisfied, R∗
u

serves as a supervisor, i.e., the complexity of synthesizing a supervisor is linear in the size of

the specification. It is interesting to note that when specification is deterministic but the plant

is nondeterministic, the complexity of existence as well as synthesis is again polynomial Kumar

et al. (2005b). In contrast, the situation seems to be different when both the plant and the

specification are nondeterministic.

4.4 Conclusion

For control of nondeterministic plant for bisimulation equivalence, we obtained a small

model theorem showing that a supervisor for enforcing bisimulation equivalence between the

specification and the controlled system exists if and only if it exists over a certain finite state

space, namely the power set of Cartesian product of the plant and the specification state

spaces.

For the special case of deterministic plants we obtained a necessary and sufficient condition

for the existence of a bisimilarity enforcing supervisor which can be verified polynomially in
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both plant and specification states. This happens to be the same as the complexity of verifying

the existence of a supervisor when both plant and specification are deterministic. A stronger

notion of controllability, called state-controllability, is introduced as part of the necessary and

sufficient condition for the existence of such a supervisor. State-controllability is stronger

than the “language-controllability”, where the latter is a property of language models, and the

former is a property of the automata models. We presented an algorithm of linear complexity

for testing state-controllability matching the complexity of testing the language-controllability.
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CHAPTER 5. SUPERVISORY CONTROL FOR BISIMULATION

EQUIVALENCE UNDER PARTIAL OBSERVATION

In this chapter, we study the control of DESs to ensure bisimilarity of the controlled

system and a given specification under partial observation. we extend the small model theorem

by showing that a control and observation compatible supervisor for enforcing bisimulation

equivalence between the specification and the controlled system exists if and only if it exists

over a certain finite state space. For the special case of deterministic plants, we introduce the

notions of state-achievability and state-achievability-bisimilar as part of the existence condition,

and develop effective algorithms for verify the existence conditions as well as for synthesizing

a supervisor when the existence condition holds. We show that the complexity of verifying

the existence of a controller is polynomial, whereas that of computing a controller (when one

exists) is singly exponential. The proposed approach can be applied to enforce any property

that depends on branching and sequential behavior.

5.1 A Motivating Example

To motivate bisimilarity control under partial observation, we introduce the following man-

ufacturing example, a solution to which is discussed latter.

Example 9 Consider a manufacturing system (shown in Figure 5.1) consisting of two work-

stations, one robot and three storage-stations. The robot moves among the workstations and

storage-stations on guide rails. Initially, the robot departs from workstation 1 and nondeter-

ministically travels on one of the rails (event a). On rail 1, the robot picks up a part from

storage-station 1 (event b1) and then delivers this part to workstation 2 for processing (event

c). After the processing, robot returns the part to storage-station 1 (event b1). On rail 2,
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the robot either picks up a part from storage-station 2 (event b2) or from storage-station 3

(event b3), and then delivers the part to workstation 2 for processing (event c). After the

processing, the robot returns the part to either storage-station 2 or 3 (event b2 or b3). Not

returning the part to its original storage-station is undesirable. After returning the part to the

storage-station, the robot goes back to workstation 1 (event a) from where the entire process

may be repeated. The state machine model G of the system is drawn in Figure 5.2.

Storage station 1

Workstation 2

Robot

Workstation 1

Storage station 3

Storage station 2

rail 1

rail 2

Figure 5.1 A manufacturing system
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q1
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b3

c

x0

b2 b3
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q2

q4q3x3 x4
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q7x7

Figure 5.2 Model G (left) and Specification R (right)

The specification R, also drawn in Figure 5.2, shows the acceptable behavior. According

to the specification, the robot returns any processed part to the same work-station from where

it picked that part.
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A part once picked must be delivered to workstation 2 for processing, i.e., the event c

is uncontrollable. Only the events a and c are completely observable. Events b1, b2 and b3

are observationally indistinguishable. Thus, we have Σ = {a, b1, b2, b3, c}, Σu = {c}, and the

observation mask M is given by, M(a) = a, M(b1) = M(b2) = M(b3) 6= ε and M(c) = c. The

control goal is to find a (Σu, M)-compatible supervisor S such that the controlled system G‖S
is bisimilar to the specification R.

5.2 Control for Nondeterministic Plants under Partial Observation

Definition 10 Let Σu ⊆ Σ be the set of uncontrollable events and M : Σ → ∆ be the

observation mask, then

• S is called Σu-compatible if ∀y ∈ Y and ∀a ∈ Σu, β(y, a) 6= ∅.

• S is called M -compatible if ∀y ∈ Y and ∀a, b ∈ Σ(y), if M(a) = M(b), then β(y, a) =

β(y, b), where it is assumed that an ε-transition is implicitly defined as a self-loop.

• S is called (Σu,M)-compatible if S is Σu-compatible and M -compatible.

We establish the main result that proves the decidability of bisimilarity enforcing control

under partial observation by extending the “small model theorem” from the setting of complete

observation (Chapter 4) to the setting of partial observation. The small model theorem states

that a bisimilarity enforcing Σu-compatible supervisor exists if and only if it exists over the

state space 2X×Q, where X is the state space of plant G and Q is the state space of specification

R. The sufficiency is clearly obvious, while the key idea behind necessity is that given a Σu-

compatible bisimilarity enforcing supervisor S (i.e., G‖S ' R), each state y ∈ Y of S can be

labeled by lbl(y) ∈ 2X×Q, and then states carrying identical labels can be merged to obtain

state machine T with state space 2X×Q such that T is Σu-compatible and G‖T ' R. We recall

that (x, q) ∈ X ×Q belongs to lbl(y) if and only if (x, y) is a state in G‖S that is bisimilar to

state q of R. We use the same labeling function for extending the small model theorem to the

setting of partial observation.

The following example illustrates how the labels are computed.
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Example 10 Consider G, S and R shown in Figure 5.3. It can be verified that G‖S ' R

since the following bisimulation relation exists between G‖S and R (for the sake of simplicity

we write a state (x, y) simply as xy):

Φ := {(x0y0, q0), (x1y1, q1), (x1y2, q2), (x2y3, q3), (x3y4, q4), (x4y5, q5), (x1y6, q1), (x1y7, q2),

(x2y8, q3), (x3y8, q4), (x4y8, q5), (q0, x0y0), (q1, x1y1), (q2, x1y2), (q3, x2y3), (q4, x3y4),

(q5, x4y5), (q1, x1y6), (q2, x1y7), (q3, x2y8), (q4, x3y8), (q5, x4y8)}.
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Figure 5.3 G (first), S (second), R (third), and G‖S (fourth)

x0 x1 x2 x3 x4 lbl(·)
y0 q0 - - - - {(x0, q0)}
y1 - q1 - - - {(x1, q1)}
y2 - q2 - - - {(x1, q2)}
y3 - - q3 - - {(x2, q3)}
y4 - - - q4 - {(x3, q4)}
y5 - - - - q5 {(x4, q5)}
y6 - q1 - - - {(x1, q1)}
y7 - q2 - - - {(x1, q2)}
y8 - - q3 q4 q5 {(x2, q3), (x3, q4), (x4, q5)}

Table 5.1 Computation of labeling function for Example 10

Using this bisimulation relation, we construct Table 5.1 in order to compute the labeling

function of each state in S. Entries in the top-most row (resp., left-most column) represent

a state x in G (resp., y in S), and the corresponding cell entry is a state q in R such that
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q 'Φ (x, y). lbl(y) ⊆ X × Q contains all (x, q) pairs such that q 'Φ (x, y). This labeling is

depicted in Figure 5.4.

c

y2

y3 y4

y6 y7

y8

cb

c

{(x0,q0)}

a
y0

{(x2,q3),(x3,q4),

{(x1,q2)}

b,c

(x4,q5)}

{(x4,q5)}

{(x3,q4)}

{(x1,q2)}

aa

a

bb

y1

y5

b,c

y0
a

a

b c

a a

b c

cb

{(x1,q1)}

{(x1,q1)}

{(x2,q3)}

<y1,y6> <y2,y7>

y3 y8 y4

y5

a
a

b

a a

c

b c c

cb b

x3y4

x0y0

x1<y1,y6> x1<y2,y7>

x2y3 x3y8x2y8

x4y5 x4y8

Figure 5.4 The labeling of states in S (left), T (middle), and G‖T (right)

Since lbl(y1) = lbl(y6) and lbl(y2) = lbl(y7), we merge y1 and y6, and y2 and y7, respectively.

The state machine T obtained by merging states in S carrying the merged state label is drawn

in Figure 5.4. It can be seen that G‖T ' R.

Theorem 7 Given G and R, and a mask M , there exists a (Σu,M)-compatible supervisor S

such that G‖S ' R if and only if there exists a (Σu,M)-compatible state machine T with state

space 2X×Q such that G‖T ' R.

Proof: (Only If) For necessity, suppose exists (Σu,M)-compatible S such that G‖S 'Φ R.

Without loss of generality, all transitions of S participate in G‖S (otherwise we can simply

omit such transitions from S). Label each y ∈ Y of S by lbl(y) ⊆ X×Q where (x, q) ∈ lbl(y) if

and only if (x, y) reachable in G‖S and q ∈ Q is such that (x, y) 'Φ q. Merge all states carrying

the same label, and call the resulting state machine T . Then from the proof of Theorem 4,

G‖T ' R, T is Σu-compatible, and state space of T is 2X×Q. We claim that T is also M -

compatible, which will prove the necessity. Suppose y1, y2 ∈ Y are such that lbl(y1) = lbl(y2).

Then y1 and y2 are merged to obtaining 〈y1, y2〉. Also since there are no redundant transitions

in S, it was shown in proof of Theorem 4 that,

Σ(y1) = ∪(x,q)∈lbl(y1)Σ(q) = ∪(x,q)∈lbl(y2)Σ(q) = Σ(y2).
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So after merger, Σ(〈y1, y2〉) = Σ(y1) = Σ(y2). Since S is M -compatible, for any pair of

indistinguishable events a1, a2 ∈ Σ(y1) = Σ(y2), β(y1, a1) = β(y1, a2) and β(y2, a1) = β(y2, a2).

So

β(〈y1, y2〉, a1) = β(y1, a1) ∪ β(y2, a1) = β(y1, a2) ∪ β(y2, a2) = β(〈y1, y2〉, a2).

Thus merger of states carrying the same label preserves M -compatibility, and so T is M -

compatible.

(If) Set S := T , then S is (Σu, M)-compatible and G‖S = G‖T ' R.

This completes the proof.

Remark 9 From Theorem 7, an exhaustive search can be performed to determine the exis-

tence of a supervisor S over the state space 2X×Q, the upper bound complexity of which is

O(22|X|×|Q|). From this, the upper bound complexity of checking the existence of a supervisor

under partial observation is same as the one under full observation. Better upper bounds may

exist for the two cases, but are not known at this time.

Next we revisit the manufacturing example.

Example 11 Our goal is to find a (Σu,M)-compatible supervisor S such that G‖S ' R

(provided one exists). Such a supervisor is drawn in Figure 5.5. Since Σu = {c}, and c is

defined at each state of S, S is Σu-compatible. Also state updates on indistinguishable pair

of events b1 and b3 at states y1, y3, y5, y6, where they are both defined, are identical, implying

that S is also M -compatible.

The controlled system G‖S is also drawn in Figure 5.5, and it can be verified that G‖S ' R.

From Theorem 7, exists a (Σu, M)-compatible T with state space 2X×Q such that G‖T ' R.

To obtain such a T , the labeling of each state in S is shown in Figure 5.6, and is computed using

Table 5.2. State machine T is obtained by merging states in S carrying the same label. Since

lbl(y1) = lbl(y5), we merge y1 and y5. The resulting state machine T is drawn in Figure 5.6.

T is (Σu,M)-compatible as expected. Moreover, G‖T ' G‖S ' R (Figure 5.7).
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Figure 5.5 S (left) and G‖S (right)

x0 x1 x2 x3 x4 x5 x6 x7 lbl(·)
y0 q0 - - - - - - - {(x0, q0)}
y1 - q1 q2 - - - - - {(x1, q1), (x2, q2)}
y2 - - - q3 q4 - - - {(x3, q3), (x4, q4)}
y3 - - - - - q5 q6 - {(x5, q5), (x6, q6)}
y4 - - - - - - - q7 {(x7, q7)}
y5 - q1 q2 - - - - - {(x1, q1), (x2, q2)}
y6 - - - q3 q4 q5 q6 q7 {(x3, q3), (x4, q4), (x5, q5), (x6, q6), (x7, q7)}

Table 5.2 Computation of labeling function for Example 11
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Figure 5.6 The labeling of states in S (left) and T (right)
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Figure 5.7 G‖T

5.3 Specialization to Deterministic Plants

To motivate the case of deterministic plant, we introduce the following manufacturing

example, a solution of which is discussed later.

Storage station 1

Storage station 2

Storage station 3

Robot

rail 2

rail 1

Home location Work location

Figure 5.8 A manufacturing system

Example 12 A robot is available at its home location to traverse on one of the two available

rails (Figure 5.8). Traversal on rail-i (i = 1, 2) is denoted by event ai, and while on rail-i, the

robot can pick a part from storage-i (event bi) or storage-(i + 1) (event bi+1). The robot then

takes the part to work location (event c). Upon completion of processing, the robot returns the

part to either storage-i (event bi) or storage-(i+1) (event bi+1) and returns to its home location
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(event d). Not returning the part to its original pick-up location is undesirable. To avoid this

undesirable behavior, the specification requires that while the robot is in its home location,

it nondeterministically decides whether to use storage-i or storage-(i + 1) while traversing on

rail-i. It is also required that the robot always be able to return to its home location (which

means that the state representing the home location is the only marked state).

Models G and Rdet of the manufacturing system and its deterministic specification, re-

spectively, are given in Figure 5.9. We assume that all events are controllable. However, only

events c and d are completely observable. Events a1 and a2 are indistinguishable, and so

are the events b1, b2 and b3. I.e., Σu = ∅, M(a1) = M(a2), and M(b1) = M(b2) = M(b3).

Controllability clearly holds since all events are controllable. However, the observability is

violated. This is because a1b1c, a1b2c ∈ L(R), M(a1b1c) = M(a1b2c), a1b1cb1 ∈ L(Rdet), yet

a1b2cb1 ∈ L(G) − L(Rdet). It follows that there does not exists a deterministic nonblocking

supervisor S such that Lm(G‖S) = Lm(Rdet).
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Figure 5.9 G (top left), Rdet (top middle), R (top right), R′ (bottom left),
R′′ (bottom right)
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Figure 5.9 also shows some of the nondeterministic specifications R, R′, R′′ that are “trim”

and language equivalent to Rdet. Due to the finiteness of Rdet the number of such “basic”

nondeterministic specifications is bounded (the boundedness follows from the small model

result of the decidability of CTL* or µ-calculus specifications), and as long as one of them

possesses a bisimilarity enforcing supervisor (possibly nondeterministic), the nonblocking con-

trol problem with language specification we set out to solve possesses a supervisor. We show

later that there exists a nondeterministic supervisor S such that G‖S ' R. Since bisimilar-

ity preserves language equivalence as well as branching behavior (such as nonblockingness),

Lm(G‖S) = Lm(R) = Lm(Rdet) and further S is nonblocking as desired.

5.3.1 State-Recognizability and State-Achievability

Since R is bisimilar to G‖S, we first ask what property must G‖S satisfy given that

G is deterministic and S is (Σu,M)-compatible. In case of complete observation, we charac-

terized the property that G‖S possesses in form of state-controllability (SC). In the presence

of partial observation, S must also be M -compatible and therefore G‖S must possess some

additional property. In this section, we characterize this additional property in form of state-

recognizability (SR). We call the combined property of SC and SR as state-achievability (SA).

5.3.1.1 State-Recognizability and its Properties

Recall that M -compatibility of S implies indistinguishable events when defined at a

state must have identical successors. Clearly, when S is composed with G such a property may

no longer hold. However, it has the property that if we merge the successors of indistinguishable

events defined at certain states of G‖S in a certain way, we can construct a M -compatible state

machine that also enforces R when used as a supervisor for G. This property is called SR and is

defined in terms of a “state-recognizability relation”. The idea behind defining such a relation

is that state-pairs in this relation can be merged to satisfy M -compatibility, while preserving

the bisimilarity of control exercised. Let Xsyn(y) := {x ∈ X | ∃s ∈ Σ∗, x ∈ α∗(X0, s) and y ∈
β∗(Y0, s)} denote the set of states in G that synchronize with a state y in S, i.e., are reached
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by a trace s ∈ L(G) ∩ L(S).

Definition 11 Given NSMs G = (X, Σ, α,X0, Xm) and S = (Y,Σ, β, Y0, Ym), a symmetric

relation Φ over states of S is said to be a state-recognizability relation if (y1, y2) ∈ Φ implies

1. For i, j = 1, 2, i 6= j, xi ∈ Xsyn(yi) implies Σ(xi) ∩ Σ(yj) ⊆ Σ(xi) ∩ Σ(yi),

(If xi can synchronize with yi in G‖S and is made to synchronize with yj (i, j = 1, 2),

then events enabled at xi remain unchanged.)

2. For i, j = 1, 2, i 6= j, ai ∈ Σ(yi), M(ai) = M(aj) implies ∀y′i ∈ β(yi, ai), ∃y′j ∈ β(yj , aj)

s.t. (y′i, y
′
j) ∈ Φ,

(If indistinguishable events ai are defined at yi, then for each ai-successor y′i of yi, there

exists a aj-successor y′j of yj such that (y′i, y
′
j) ∈ Φ.)

3. For i, j = 1, 2, i 6= j, yi ∈ Ym implies [yj ∈ Ym] ∨ [Xsyn(yj) ∩Xm = ∅]. (If yi is marked

then either yj is also marked or yj synchronizes with only unmarked states.)

We use 〈y1, y2〉 to denote the state obtained by merger of y1 and y2. The set of events defined

at a state 〈y1, y2〉 is the union of the set of events defined at y1 and y2, i.e., Σ(〈y1, y2〉) = ∪iΣ(yi).

For (i) preserving control exercised, and (ii) satisfying M -compatibility when states y1 and y2

are merged, the following should hold:

• Enabled events should not change:

Σ(xi) ∩ [Σ(y1) ∪ Σ(y2)] = Σ(xi) ∩ Σ(yi), for i = 1, 2,

where left/right hand side is set of events enabled at xi after/before the merger. Suppose

we let i = 1, then the above simplifies to

[Σ(x1) ∩ Σ(y1)] ∪ [Σ(x1) ∩ Σ(y2)] = Σ(x1) ∩ Σ(y1).

For this to hold, we need

Σ(x1) ∩ Σ(y2) ⊆ Σ(x1) ∩ Σ(y1).

Similarly, if we let i = 2, then Σ(x2) ∩Σ(y1) ⊆ Σ(x2) ∩Σ(y2) should hold. This justifies

the first requirement in Definition 11.
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• Any pair of indistinguishable events defined at the merged state 〈y1, y2〉 should have

successors that can be paired and combined (for M -compatibility). For this, pairings

of successors should exist that can be merged. This justifies the second requirement in

Definition 11.

• The combined state should not change the marking status of the controlled system. Thus,

for a state-pair being combined, if one of them is marked, then either the other one is also

marked or, all states of G that can synchronize with this unmarked state are themselves

unmarked. This justifies the third requirement in Definition 11.

If an automaton S possesses a state-recognizability relation which includes all pairs (y0, y0) ∈
Y 2

0 of the initial states, it is called a state-recognizable automaton:

Definition 12 Given G and an observation mask M , S is state-recognizable with respect to G

and M if there exists a state-recognizability relation Φ over states of S such that (y0, y0) ∈ Φ

for all y0 ∈ Y0.

Remark 10 The name state-recognizability is chosen since it is a generalization of “language-

recognizability” introduced in Kumar et al. (2005b): Language-recognizability is a property of

L(G‖S), whereas as we show below the state-recognizability is a property of G‖S.

Note that by definition Φ is symmetric. Using the definition of state-recognizability it can

then be concluded that (y, y) ∈ Φ for each y ∈ Y , i.e., Φ is also reflexive. However Φ need not

be transitive.

State-recognizability relation is closed under intersection. To see this, consider two state-

recognizability relations Φ1 and Φ2 over states of S. Pick any state-pair (y1, y2) ∈ Φ1 ∩ Φ2.

By Definition 11, condition 1, 2 and 3 hold for (y1, y2). Thus, Φ3 = Φ1 ∩ Φ2 is also a state-

recognizability relation. Further if both Φ1 and Φ2 contain (y0, y0) for each y0 ∈ Y0, then so

does Φ3 = Φ1 ∩ Φ2. Therefore, whenever S is state-recognizable, there always exists a certain

state-recognizability relation that is unique in the sense that it is the minimal one; which is

what we work with by default.

The following example illustrates the above concepts.
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Example 13 Consider G and S drawn in Figure 5.10, M(a) = ε, M(b1) = M(b2), M(c) = c,

b 1 b 2
b 2b 2

b 1 b 2,

b 1

b 1 b 2,

4 53
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d,e

<C,D> <C,E>

<A,B>

c,d

d d,e d

,d

c,d

, d

Figure 5.10 G (left), S (middle), and SΦ (right)

M(d) = d and M(e) = e. We examine whether S is state-recognizable. I.e., we need to check

whether there exists a state-recognizability relation Φ with (A,A) ∈ Φ. Since all states are

assumed marked, condition 3 need not be checked.

The first condition obviously holds for (y1, y2) = (A,A) ∈ Φ since both states in the pair

are the same. Next, since we have the transitions (A, ε, A), (A, a, B) and M(a) = ε, we check

condition 1 for the state pair (A,B). Indeed we have, Xsyn(A) = {1}, [Σ(1) ∩ Σ(B) = ∅] ⊆
[Σ(1) ∩ Σ(A) = {a}], and Xsyn(B) = {2}, [Σ(2) ∩ Σ(A) = ∅] ⊆ [Σ(2) ∩ Σ(B) = {b1, b2, d}].

The only pair of indistinguishable transitions defined at the pair of states (A,B) are

(A, a,B) and (B, ε, B). So we need to check the condition 1 for pair (B, B), which is ob-

viously satisfied since the two states in the pair are the same. Next, since b1, b2 ∈ Σ(B) and

M(b1) = M(b2), condition 1 needs to be checked for each b1-successor and each b2-successor of

B. Consider first the b1-successor state C. We find that there exists b2-successor state D such

that condition 1 holds, namely, Xsyn(C) = {3}; [Σ(3) ∩ Σ(D) = {d}] ⊆ [Σ(3) ∩ Σ(C) = {d}],
and Xsyn(D) = {5}; [Σ(5) ∩ Σ(C) = {d}] ⊆ [Σ(5) ∩ Σ(D) = {d, e}].

Thus, for b1-successor state C (resp. b2-successor state D) of B, there exists b2-successor

state D (resp. b1-successor state C) such that condition 1 holds. Next consider b2-successor

state E of B. Then there exists b1-successor state C such that Xsyn(E) = {4, 5}; [Σ(4) ∩
Σ(C) = {d}] ⊆ [Σ(4) ∩ Σ(E) = {c, d}], and [Σ(5) ∩ Σ(C) = {d}] ⊆ [Σ(5) ∩ Σ(E) = {d}], and

Xsyn(C) = {3}; [Σ(3) ∩ Σ(E) = {d}] ⊆ [Σ(3) ∩ Σ(C) = {d}].
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Therefore, there exists a symmetric state-recognizability relation Φ:

Φ = {(A,A), (A,B), (B,A), (B, B), (C,C), (C,D), (D, C),

(D, D), (C, E), (E, C), (E, E), (F, F )}. Since (A, A) ∈ Φ, we conclude that S is state-recognizable.

The following lemma proves our earlier conjecture that M -compatibility of S and determin-

ism of G imply the state-recognizability of G‖S. Since R ' G‖S, this establishes the property

of “state-recognizable-bisimilar” as a necessary property for the existence of a bisimilarity

enforcing M -compatible supervisor.

Lemma 9 Given deterministic G and M -compatible S, G‖S is state-recognizable.

Proof: Define a relation Φ ⊆ (X × Y )2 as follows:

1. ((x0, y0), (x0, y0)) ∈ Φ for all y0 ∈ Y0,

2. For ((x1, y), (x2, y)) ∈ Φ, if ai ∈ Σ((xi, y)) and M(a1) = M(a2), then for all y ∈
β(y, a1)

(a)
= β(y, a2), ((x1a1 , y), (x2a2 , y)) ∈ Φ, where xiai = α(xi, ai).

Equality (a) holds because S is M -compatible. From the second part of the definition of Φ,

the condition 2 of state-recognizability automatically holds. So we only need to show the

conditions 1 and 3. Consider a state-pair ((x1, y), (x2, y)) ∈ Φ. Then due to the determinism

of G, Xsyn((xi, y)) = {xi}, i.e., xi in G is the unique state that synchronizes with state (xi, y)

in G‖S. For ((x1, y), (x2, y)) ∈ Φ, we have

Σ(x1) ∩ Σ((x2, y)) = Σ(x1) ∩ [Σ(x2) ∩ Σ(y)]

= [Σ(x1) ∩ Σ(y)] ∩ Σ(x2)

⊆ Σ(x1) ∩ Σ(y)

= Σ(x1) ∩ [Σ(x1) ∩ Σ(y)]

= Σ(x1) ∩ Σ((x1, y)).

Similarly, Σ(x2) ∩ Σ((x1, y)) ⊆ Σ(x2) ∩ Σ((x2, y)).

It remains to show that the condition 3 of Definition 11 also holds. Suppose (x1, y) ∈
Xm × Ym, then y ∈ Ym. If x2 ∈ Xm, then (x2, y) ∈ Xm × Ym. On the other hand, if x2 6∈ Xm,
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then since Xsyn((x2, y)) = {x2} (follows from determinism of G), Xsyn((x2, y)) ∩ Xm = ∅,
establishing the condition 3. It follows that Φ is a state-recognizability relation. Further since

((x0, y0), (x0, y0)) ∈ Φ for each y0 ∈ Y0, G‖S is state-recognizable as desired.

Next we establish the following main property of state-recognizability: Given a state-

recognizable S possessing an underlying state-recognizability relation Φ, it is possible to com-

pute SΦ such that SΦ is M -compatible and G‖S ' G‖SΦ. The following algorithm computes

SΦ by combining state-pairs in a state-recognizability relation.

Definition 13 Suppose S is state-recognizable, possessing an underlying state-recognizability

relation Φ. We say that Ŷ ⊆ Y is a Φ-compatible set if y1, y2 ∈ Ŷ implies (y1, y2) ∈ Φ. A

Φ-compatible set is maximal if no larger Φ-compatible set exists.

Note that a state-recognizability relation Φ need not be transitive, and as a result, the Φ-

compatible sets do not form a partition of Y , rather only a cover. The states of SΦ are then

chosen to be the maximal Φ-compatible sets.

Algorithm 2 Given a state-recognizability relation Φ under which S is state-recognizable, an

algorithm for the computation of a M -compatible SΦ is given below.

SΦ := (Y, Σ, βΦ,Y0,Ym),

where

• Y ⊆ 2Y is set of states of SΦ, and

Y = {Ŷ ⊆ Y | Ŷ is a maximal Φ-compatible set}.

• βΦ is its transition function such that for all Ŷ , Ỹ ∈ Y and for all

σ ∈ Σ(Ŷ , Ỹ ) : {σ ∈ Σ(Ŷ ) = ∪y∈Ŷ Σ(y) | β(Ŷ , σ) ∩

Ỹ 6= ∅},

Ỹ ∈ βΦ(Ŷ , σ) ⇔ M−1M(σ) ∩ Σ(Ŷ ) ⊆ Σ(Ŷ , Ỹ ).
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• Y0 is its set of initial states, and Y0 = {Ŷ ∈ Y | Ŷ ∩ Y0 6= ∅}.

• Ym is its set of marked states, and Ym = {Ŷ ∈ Y | Ŷ ∩ Ym 6= ∅}.

The following proposition proves the correctness of Algorithm 2.

Proposition 1 Algorithm 2 is correct. I.e., consider G, S and an observation mask M .

Suppose S is state-recognizable so that there exists a state-recognizability relation Φ such that

(y0, y0) ∈ Φ for all y0 ∈ Y0. Then SΦ is M -compatible, where SΦ is computed by Algorithm 2.

Proof: Pick Ŷ , Ỹ ∈ Y and σ, σ′ ∈ Σ(Ŷ ) such that M(σ) = M(σ′). Suppose σ ∈ Σ(Ŷ , Ỹ ). We

first show that σ′ ∈ Σ(Ŷ , Ỹ ). Since Ŷ , Ỹ ∈ Y are maximal Φ-compatible sets, by Definition 11,

we have

σ ∈ Σ(Ŷ , Ỹ ), σ′ ∈ Σ(Ŷ ),M(σ) = M(σ′)

⇒ ∃y ∈ β(Ŷ , σ) ∩ Ỹ , and ∃ỹ ∈ β(Ŷ , σ′) s.t. (y, ỹ) ∈ Φ

⇒ ỹ ∈ Ỹ

⇒ β(Ŷ , σ′) ∩ Ỹ 6= ∅

⇒ σ′ ∈ Σ(Ŷ , Ỹ ).

Next from the definition of βΦ, for σ, σ′ ∈ Σ(Ỹ , Ŷ ),

Ỹ ∈ βΦ(Ŷ , σ) ⇔ M−1M(σ) ∩ Σ(Ŷ ) ⊆ Σ(Ŷ , Ỹ )

⇔ M−1M(σ′) ∩ Σ(Ŷ ) ⊆ Σ(Ŷ , Ỹ )

⇔ Ỹ ∈ βΦ(Ŷ , σ′),

as desired.

Remark 11 Given a state-recognizability relation Φ ⊆ Y 2, checking the Φ-compatibility of

a set Ŷ ⊆ Y is quadratic in its size. By examining all subsets of Y (which are exponentially

many in number), we can identify all those that are φ-compatible, and then the ones that are

maximal. It follows that the complexity of Algorithm 2 is O(2|Y |2) = O(2|S|).

The following example illustrates the construction of SΦ.
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Example 14 Consider state-recognizable state machine S shown in Example 13. We first

compute Y. By the state-recognizability relation Φ computed in Example 13, we have

Y = {{A,B}, {C,D}, {C,E}, {F, F}},

and Y0 = {{A,B}}.
Next we compute the set of transitions. Let

Ŷ0 = {A, B}, Ŷ1 = {C, D}, Ŷ2 = {C,E}, Ŷ3 = {F, F}.

Note that Σ(Ŷ0) = {a, b1, b2, d, ε}.

• Since Σ(Ŷ0, Ŷ0) = {a, ε} and M−1M(a)∩Σ(Ŷ0) = {a, ε} ⊆ Σ(Ŷ0, Ŷ0), transition (Ŷ0, a, Ŷ0)

is in SΦ.

• Since Σ(Ŷ0, Ŷ1) = {b1, b2, ε} and M−1M(b1) ∩ Σ(Ŷ0) = {b1, b2} = M−1M(b2) ∩ Σ(Ŷ0) ⊆
Σ(Ŷ0, Ŷ1), transitions (Ŷ0, b1, Ŷ1) and (Ŷ0, b2, Ŷ1) are in SΦ.

• Since Σ(Ŷ0, Ŷ2) = {b1, b2, d, ε}, and M−1M(b1)∩Σ(Ŷ0) = {b1, b2} = M−1M(b2)∩Σ(Ŷ0) ⊆
Σ(Ŷ0, Ŷ2), and M−1M(d) ∩ Σ(Ŷ0) = {d} ⊆ Σ(Ŷ0, Ŷ2), transitions (Ŷ0, b1, Ŷ2), (Ŷ0, b2, Ŷ2)

and (Ŷ0, d, Ŷ2) are in SΦ.

Similarly one can compute the other transitions; the details are omitted here. SΦ is drawn

in Figure 5.10 (self-loop transitions on ε are omitted). It can be verified by inspection that SΦ

is M -compatible.

Having showed that SΦ is M -compatible whenever S is state-recognizable, we next show

that if in addition S is bisimilarity enforcing, then so is SΦ.

Proposition 2 Given G and S, if S is state-recognizable possessing an underlying state-

recognizability relation Φ, then G‖S ' G‖SΦ, where SΦ is computed by Algorithm 2.

Proof: Define a relation Ψ ⊆ ((X × Y) ∪ (X × Y ))2 as:

Ψ := {((x, Ŷ ), (x, y)), ((x, y), (x, Ŷ )) | (x, Ŷ ) in G‖SΦ,

(x, y) in G‖S, and y ∈ Ŷ }.
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Note that from construction in Algorithm 2, Xsyn(Ŷ ) = ∪y′∈Ŷ Xsyn(y′). So, x ∈ Xsyn(y)

implies x ∈ Xsyn(Ŷ ) when y ∈ Ŷ , i.e., a pair ((x, y), (x, Ŷ )) with y ∈ Ŷ in Ψ is indeed feasible.

We next prove that Ψ is a bisimulation relation. For a state-pair ((x, Ŷ ), (x, y)) ∈ Ψ, it is

clear that (x, y) ∈ (X × Y )syn(x, Ŷ ). Further,

Σ((x, Ŷ )) = Σ(x) ∩ Σ(Ŷ )

= Σ(x) ∩ [∪y′∈Ŷ Σ(y′)]

= [Σ(x) ∩ Σ(y)] ∪ [Σ(x) ∩ [∪y′∈Ŷ−{y}Σ(y′)]]

= Σ((x, y)) ∪ [∪y′∈Ŷ−{y}(Σ(x) ∩ Σ(y′))]

(a)
= Σ((x, y)).

Equality (a) holds because y′ ∈ Ŷ − {y}, and y ∈ Ŷ implies (y, y′) ∈ Φ. So by Definition 11,

Σ(x) ∩ Σ(y′) ⊆ Σ(x) ∩ Σ(y) = Σ((x, y)) for x ∈ Xsyn(y) and y′ ∈ Ŷ − {y}.
Similar event-set equality as established above for ((x, Ŷ ), (x, y)) pair needs to hold for their

respective σ-successors, which will be the case whenever the respective σ-successors form a pair

that lies in Ψ. For a σ-successor state (xσ, yσ) in G‖S, there exists some Ŷσ ∈ βΦ(Ŷ , σ) such

that yσ ∈ Ŷσ since Σ(Ŷ ) = ∪y′∈ŷΣ(y′). Then obviously, ((xσ, Ŷσ), (xσ, yσ)) ∈ Ψ, as desired.

Further by Algorithm 2, y ∈ Ŷ and y ∈ Ym implies Ŷ ∩ Ym 6= ∅, i.e., Ŷ ∈ Ym. Thus

(x, y) ∈ Xm × Ym implies (x, Ŷ ) ∈ Xm × Ym. On the other hand, if (x, Ŷ ) ∈ Xm × Ym, then

for any y ∈ Ŷ , we claim that y ∈ Ym. Suppose for contradiction that y 6∈ Ym. Since Ŷ ∈ Ym,

then there exists y′ ∈ Ŷ ∩ Ym. Also since y, y′ ∈ Ŷ , (y, y′) ∈ Φ. Thus by condition 3 of

Definition 11, Xsyn(y) ∩Xm = ∅. Then for x ∈ Xsyn(y), x 6∈ Xm, a contradiction to the fact

that (x, Ŷ ) ∈ Xm × Ym.

By Definition 1, Ψ is a simulation relation. Further, each state (x, y) of G‖S is paired

with a state (x, Ŷ ) of G‖SΦ such that y ∈ Ŷ , and vice-versa. So Ψ is symmetric. I.e., Ψ is a

bisimulation relation. Finally, since for each Ŷ0 ∈ Y0 and y0 ∈ Y0, {((x0, Ŷ0), (x0, y0)) | y0 ∈
Ŷ0} ⊆ Ψ, G‖SΦ 'Ψ G‖S, as desired.
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5.3.1.2 State-Achievability and its Properties

State-achievability is the combined property of state-controllability and state-recognizability

introduced earlier. It is a generalization of language-achievability which is a property of a

controlled plant behavior L(G‖S), whereas state-achievability is a property of the controlled

deterministic-plant G‖S.

Definition 14 Given G, uncontrollable event set Σu, and observation mask M , S is state-

achievable (SA) with respect to G, Σu and M if

• S is state-controllable with respect to G and Σu, i.e., s ∈ L(S), σ ∈ Σu such that

sσ ∈ L(G) ⇒ ∀y ∈ β∗(Y0, s), σ ∈ Σ(y), and

• S is state-recognizable with respect to G and M .

Next we establish the following main property of state-achievability: Given a state-achievable

S possessing an underlying state-recognizability relation Φ, it is possible to compute SΦ,Σu such

that SΦ,Σu is (Σu,M)-compatible and G‖S ' G‖SΦ,Σu . We first show that the SC property is

preserved under (·)Φ computation. We need the following alternative characterization of the

SC property.

Lemma 10 Given G, S is state-controllable if and only if for each y in S, [∪x∈Xsyn(y)Σ(x)] ∩
Σu ⊆ Σ(y) ∩ Σu.

Proof: Note that we have the following equivalence:

a ∈ [∪x∈Xsyn(y)Σ(x)] ∩ Σu ⇔

a ∈ Σu, ∃s ∈ L(G) : y ∈ β∗(Y0, s) and sa ∈ L(G).

Thus, the proof follows from Definition 14.

Lemma 11 Consider G and S such that S is state-achievable. Let Φ be the state-recognizability

relation under which S is state-recognizable and SΦ be computed by Algorithm 2. Then SΦ

is state-controllable.



www.manaraa.com

59

Proof: Consider a state Ŷ in SΦ, and the set of states Xsyn(Ŷ ) in G that synchronize with

Ŷ . Then from construction in Algorithm 2, Xsyn(Ŷ ) = ∪y∈Ŷ Xsyn(y) and Σ(Ŷ ) = ∪y∈Ŷ Σ(y).

By Lemma 10, for SΦ to be SC, it suffices to show that

[∪y∈Ŷ [∪x∈Xsyn(y)Σ(x)]] ∩ Σu ⊆ [∪y∈Ŷ Σ(y)] ∩ Σu.

Since S is SC, for y ∈ Y , [∪x∈Xsyn(y)Σ(x)] ∩ Σu ⊆ Σ(y) ∩ Σu. Thus, the following holds:

∪y∈Ŷ [∪x∈Xsyn(y)Σ(x) ∩ Σu] ⊆ ∪y∈Ŷ [Σ(y) ∩ Σu] ⇔

∪y∈Ŷ [∪x∈Xsyn(y)Σ(x)] ∩ Σu ⊆ ∪y∈Ŷ [Σ(y)] ∩ Σu.

Using the fact that SΦ is SC, we can obtain SΦ,Σu that is Σu-compatible and preserves the

M -compatibility property as well as the bisimilarity of control exercised.

Algorithm 3 Given a state-achievable state machine S, consider SΦ where Φ is the state-

recognizability relation under which S is state-recognizable, and SΦ is as computed by Algo-

rithm 2. The computation of a (Σu,M)-compatible SΦ,Σu is given as below.

For each state Ŷ of SΦ and σ ∈ Σu − Σ(Ŷ ), add the following transition(s) on σ:

• If 6 ∃a ∈ Σ(Ŷ ) such that M(a) = M(σ), then add σ as self-loop at Ŷ ;

• Else, ∀a ∈ Σ(Ŷ ) such that M(a) = M(σ), add transition on σ from Ŷ to each state in

βΦ(Ŷ , a).

Theorem 8 Algorithm 3 is correct. I.e., given a state-achievable state machine S, SΦ,Σu is

(Σu,M)-compatible and G‖S ' G‖SΦ,Σu , where SΦ,Σu is computed by Algorithm 3.

Proof: Since σ ∈ Σu is defined at every state of SΦ,Σu , SΦ,Σu is Σu-compatible. By Propo-

sition 1, SΦ is M -compatible. Also, transitions on undefined uncontrollable events are added

in SΦ so that all indistinguishable transitions at a state have the same successors in SΦ,Σu . It

follows that SΦ,Σu is M -compatible, and so SΦ,Σu is also (Σu,M)-compatible.

By Lemma 11, S is state-controllable implies SΦ is state-controllable. Then for any state

(x, Ŷ ) in G‖SΦ such that x has uncontrollable events defined, SΦ also has those events defined
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at Ŷ . Therefore, adding transitions at each state Ŷ on undefined uncontrollable events in SΦ

does not change the result of synchronous composition. It follows that G‖SΦ = G‖SΦ,Σu .

Since by Proposition 2, G‖S ' G‖SΦ, G‖S ' G‖SΦ,Σu , as desired.

5.3.2 Existence Condition and Verification

We established the state-achievability of G‖S. Since G‖S needs to be bisimilar to R,

R needs to be “state-achievable-bisimilar”, which we define next.

Definition 15 Given G, uncontrollable event set Σu and observation mask M), R is said to

be state-achievable-bisimilar (SAB) (with respect to G, Σu, and M) if there exists a state-

achievable S (with respect to G, Σu, and M) such that S ' R.

It is evident from the above definition that SAB is preserved under bisimilarity and also it

is implied by SA. However SAB is strictly weaker than SA. This is established by the following

example which shows that the SA property is not preserved under bisimulation.

Example 15 Consider an example shown in Figure 5.11, where Σu = ∅, M(a1) = M(a2) and

identity mask for other events.
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Figure 5.11 G (left), R1 (middle), and R2 (right)

It can be easily verified that R1 ' R2, R1 is state-achievable, but R2 is not. To see this,

consider state A in R2. Since M(a1) = M(a2), for R2 to be state-recognizable, the condition 1

in Definition 11 should hold for the corresponding successors B and C. Since Xsyn(B) = {2, 4}
and [Σ(4)∩Σ(C) = {b2, b3}] 6⊆ [Σ(4)∩Σ(B) = {b1}], the condition 1 does not hold. Thus, R2

is not state-recognizable, and therefore not state-achievable.
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The following theorem establishes a necessary and sufficient condition for the existence of

a bisimilarity enforcing supervisor.

Theorem 9 Consider a deterministic G, a possibly nondeterministic R, and an observation

mask M . Then there exists a (Σu,M)-compatible supervisor S such that G‖S ' R if and only

if R v G and R is state-achievable-bisimilar.

Proof: We first prove the necessity. From Corollary 2, R v G and from Lemma 8, G‖S
is state-controllable. Since S is M -compatible and G is deterministic, from Lemma 9, G‖S
is state-recognizable. So G‖S is state-achievable (SA). Since R ' G‖S, it follows that R is

state-achievable-bisimilar (SAB).

To see the sufficiency, since R is SAB, there exists S ' R such that S is SA. Since S is SA,

there exists a state-recognizability relation Φ over the states of S. We choose SΦ,Σu to be the

desired supervisor. Then from Theorem 8, SΦ,Σu is (Σu,M)-compatible and G‖SΦ,Σu ' G‖S.

Further since S ' R, it follows that G‖S ' G‖R. Further since R v G and G is deterministic,

it follows from Lemma 6 that G‖R ' R.

Remark 12 When the events can be completely observed (i.e., when M is the identify func-

tion), the state-achievability is equivalent to state-controllability, and as a result the condition

of Theorem 9 becomes “state-controllable-bisimilar” (SCB). This is equivalent to the condi-

tion of Theorem 6 since R is SCB if and only if R∗ := (Q∗, Σ, δ∗, Q∗
0, Q

∗
m) is SC. (We recall

that R∗ is obtained from R = (Q,Σ, δ,Q0, Qm) by replacing the transition function δ with its

“ε-closure” δ∗ and renaming the states as: Q = Q∗, Q0 = Q∗
0, Qm = Q∗

m.)

In order to verify the existence of a bisimilarity enforcing supervisor for a deterministic-

plant using Theorem 9, we need a method to verify the SAB property of R. (Methods to verify

R v G are well-known.) We show below that when R is simulated by G and G is deterministic,

R is SAB if and only if G‖R∗ is SA. With such a result in hand all we need is a way to test

the SA property, which we present in the next section. We need the results of the following

two lemmas.

Lemma 12 Given deterministic G, S is state-achievable implies that G‖S∗ is state-achievable.
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Proof: We need to show that G‖S∗ is SC and SR. SC of G‖S∗ follows from Lemma 7 and

Definition 14. Next we show that if S is SR then so is G‖S∗.
S is SR implies that there exists a state-recognizability relation Φ ⊆ Y 2 with (y0, y0) ∈ Φ

for y0 ∈ Y0. Define a relation Φ ⊆ (X × Y ∗)2 as

Φ′ := Φ(y1,y2)→((x1,y∗1),(x2,y∗2)),

i.e., Φ with (y1, y2) ∈ Φ replaced by ((x1, y
∗
1), (x2, y

∗
2)), where (y1, y2) ∈ Φ and xi ∈ Xsyn(yi) =

Xsyn(y∗i ). We need to show that all the conditions appearing in Definition 11 are satisfied.

Due to determinism of G, Xsyn((xi, y
∗
i )) = {xi}. Thus, for ((x1, y

∗
1), (x2, y

∗
2)) ∈ Φ′,

Σ(x1) ∩ Σ((x2, y
∗
2))

= [Σ(x1) ∩ Σ(y∗2)] ∩ Σ(x2)

= ∪y′2∈ε∗(y2)[Σ(x1) ∩ Σ(y′2)] ∩ Σ(x2)
(a)

⊆ ∪y′1∈ε∗(y1)[Σ(x1) ∩ Σ(y′1)] ∩ Σ(x2)

⊆ Σ(x1) ∩ Σ(y∗1)

= Σ(x1) ∩ Σ((x1, y
∗
1)).

Containment (a) holds since SR of S implies (y′1, y′2) ∈ Φ, where y′i ∈ ε∗(yi) and (y1, y2) ∈ Φ.

Further, (y′1, y′2) ∈ Φ implies Σ(x1) ∩ Σ(y′2) ⊆ Σ(x1) ∩ Σ(y′1) for x1 ∈ Xsyn(y1). Similarly,

Σ(x2) ∩ Σ((x1, y
∗
1)) ⊆ Σ(x2) ∩ Σ((x2, y

∗
2)). Thus, the condition 1 of Definition 11 holds.

Also, ai ∈ Σ((xi, y
∗
i )) implies ∃ŷi ∈ ε∗(yi) such that ai ∈ Σ(ŷi), and (y1, y2) ∈ Φ implies

(ŷ1, ŷ2) ∈ Φ and (ŷ1a1 , ŷ2a2) ∈ Φ. It follows that ((x1a1 , ŷ
∗
1a1

), (x2a2 , ŷ
∗
2a2

)) ∈ Φ′. Thus the

condition 2 of Definition 11 also holds.

Finally, if (x1, y
∗
1) ∈ Xm× Y ∗

m and (x2, y
∗
2) 6∈ Xm× Y ∗

m, then either x2 6∈ Xm or y2 6∈ Ym. If

y2 6∈ Ym, then since (y1, y2) ∈ Φ, we have Xsyn(y2)∩Xm = ∅. So since x2 ∈ Xsyn(y2), x2 6∈ Xm.

Under determinism of G, this further implies Xsyn((x2, y2))∩Xm = {x2}∩Xm = ∅. It follows

that the condition 3 of Definition 11 holds. Thus, Φ′ is a state-recognizability relation. Further

since ((x0, y
∗
0), (x0, y

∗
0)) ∈ Φ′ for each y∗0 ∈ Y ∗

0 , G‖S∗ is SR as desired.
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Lemma 13 Given deterministic G, (possibly nondeterministic) S = (Y, Σ, β, Y0, Ym) and Ŝ =

(Ŷ , Σ, β̂, Ŷ0, Ŷm), if S∗ 'Ψ Ŝ∗ and G‖S∗ is state-achievable, then G‖Ŝ∗ is also state-achievable.

Proof: Since G‖S∗(' G‖S) ' G‖Ŝ, SC of G‖Ŝ∗ = (G‖Ŝ)∗ follows from Lemma 7. G‖S∗ is SR

implies there exists a state-recognizability relation Φ ⊆ (X × Y ∗)2 with ((x0, y
∗
0), (x0, y

∗
0)) ∈ Φ

for all y∗0 ∈ Y ∗
0 . Define a relation Φ′ ⊆ (X × Ŷ ∗)2 as

Φ′ := Φ((x1,y∗1),(x2,y∗2))→((x1,ŷ∗1),(x2,ŷ∗2)),

i.e., Φ with ((x1, y
∗
1), (x2, y

∗
2)) replaced by ((x1, ŷ

∗
1), (x2, ŷ

∗
2)), where (y∗1, ŷ∗1), (y∗2, ŷ∗2) ∈ Ψ.

Since G is deterministic, Xsyn((xi, y
∗
i )) = Xsyn((xi, ŷ

∗
i )) = {xi}. Thus, for i, j = 1, 2, ∀x ∈

Xsyn((xi, y
∗
i )) = {xi} :

Σ(x) ∩ Σ((xj , y
∗
j )) ⊆ Σ(x) ∩ Σ((xi, y

∗
i ))

⇒ Σ(xi) ∩ Σ((xj , y
∗
j )) ⊆ Σ(xi) ∩ Σ((xi, y

∗
i ))

(a)⇒ Σ(xi) ∩ Σ((xj , ŷ
∗
j )) ⊆ Σ(xi) ∩ Σ((xi, ŷ

∗
i ))

⇒ ∀x ∈ Xsyn((xi, ŷ
∗
i )),

Σ(x) ∩ Σ((xj , ŷ
∗
j )) ⊆ Σ(x) ∩ Σ((xi, ŷ

∗
i ))

Implication (a) holds since (y∗i , ŷ
∗
i ) ∈ Ψ implies Σ(y∗i ) = Σ(ŷ∗i ). By Definition 11, Φ′ is a

state-recognizability relation with ((x0, ŷ
∗
0), (x0, ŷ

∗
0)) ∈ Φ′ for all ŷ∗0 ∈ Ŷ ∗

0 . Therefore, G‖Ŝ∗ is

SR.

The following theorem establishes a way to verify state-recognizability of a specification R.

Theorem 10 Given a deterministic G and a nondeterministic R such that R v G, R is

state-achievable-bisimilar if and only if G‖R∗ is state-achievable.

Proof: For the necessity, there exists S such that S ' R (which implies S∗ ' R∗) and S is SA.

By Lemma 12, G‖S∗ is SA. This together with the fact that S∗ ' R∗, implies from Lemma 13

that G‖R∗ is SA.

To see the sufficiency, we need to show the existence of S ' R such that S is SA. Choose

S = G‖R. Then by SA of G‖R∗, S is SA. So it remains to show that S(= G‖R∗) ' R. Since

G is deterministic and R∗ ' R v G, it follows that G‖R∗ ' R.
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Remark 13 According to Theorem 9, SΦ,Σu can be used as a supervisor, where S is any

state machine such that S ' R and S is state-achievable. According to Theorem 10, S can be

chosen to be G‖R∗. Thus a possible (Σu,M)-compatible bisimilarity enforcing supervisor for a

deterministic-plant is given by (G‖R∗)Φ,Σu . The complexity of its computation is the same as

that of (G‖R∗)Φ since the complexity of computing (·)Φ,Σu is linear in size of (·)Φ. Recall that

a state in (G‖R∗)Φ is a subset of X×Q∗ = X×Q implying that the complexity of synthesizing

a bisimilarity enforcing supervisor for a deterministic-plant is of order O(2|G|×|R|).

Next we illustrate Theorem 9 by revisiting Example 12.

Example 16 Applying Theorem 9, we first check whether R v G (R and G are shown in

Figure 5.9). This can be easily verified. Also, since Σu = ∅, G‖R∗ is trivially SC.

Next, we verify whether G‖R∗(= G‖R since no ε-transitions exist)(shown in Figure 5.12)

is state-recognizable. We find the following state-recognizability relation Φ ⊆ (X × Q∗)2 =

(X ×Q)2 exists (the details are omitted):

Φ = {((A, 1), (A, 1)), ((B, 2), (C, 10)), ((B, 3), (C, 9)),

((D, 4), (E, 12)), ((D, 5), (E, 11)), ((F, 6), (G, 14)),

((F, 7), (G, 13)), ((H, 8), (K, 15)), ((C, 10), (B, 2)),

((C, 9), (B, 3)), ((E, 12), (D, 4)), ((E, 11), (D, 5)),

((G, 14), (F, 6)), ((G, 13), (F, 7)), ((K, 15), (H, 8))}.

Thus, R is SAB. Therefore, there exists a (Σu,M)-compatible supervisor S such that G‖S ' R.

Since Σu = ∅, S is same as (G‖R∗)Φ, which is drawn in Figure 5.12. The controlled system

G‖S turns out to be the same as R and is also shown in Figure 5.12. Obviously G‖S ' R and

so S is nonblocking and Lm(G‖S) = Lm(R) = Lm(Rdet), where Rdet as shown in Figure 5.9 is

a deterministic automaton representing the desired language specification.

Of course if G‖R∗ was not SA, one would verify whether other nondeterministic, trim,

and language equivalent specifications (such as R′ or R′′ shown in Figure 5.9) satisfy such

property. Note that due to the finiteness of Rdet the number of “basic” nondeterministic, trim,
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Figure 5.12 G‖R∗ (left), S = (G‖R∗)Φ (middle), and G‖S (right)

and language equivalent specifications is bounded. (The boundedness follows from the small

model result of the decidability of CTL* or µ-calculus specifications.)

5.3.3 Test for State-Achievability

Theorem 10 reduces the verification of state-achievability-bisimilar (SAB) to that of

state-achievability (SA), i.e., state-controllability (SC) and state-recognizability (SR). The ver-

ification of SC can be performed by Algorithm 1. We next develop an algorithm for verifying

state-recognizability.

Algorithm 4 The algorithm for verifying state-recognizability of S is given as below:

1. Consider two copies of S and perform their masked-composition, denoted MC(S, S) :=

(Y 2,Σ2, β2, Y 2
0 , Y 2

m), where ∀(y1, y2) ∈ Y 2, (σ1, σ2) ∈ Σ2,

β2((y1, y2), (σ1, σ2)) :=



β(y1, σ1)× β(y2, σ2), if M(σ1) = M(σ2),

σ1 6= ε 6= σ2,

β(y1, σ1)× {y2}, if M(σ1) = ε = σ2,

{y1} × β(y2, σ2), if M(σ2) = ε = σ1,

∅, if σ1 = σ2 = ε.

β2((y1, y2), ε) := (β(y1, ε)× {y2}) ∪ ({y1} × β(y2, ε)).
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2. Mark a state (y1, y2) of MC(S, S) “good” if and only if ∀xi ∈ Xsyn(yi), Σ(xi) ∩Σ(yj) ⊆
Σ(xi) ∩ Σ(yi), i, j = 1, 2, and yi ∈ Ym, yj 6∈ Ym ⇒ Xsyn(yj) ∩Xm = ∅, i, j = 1, 2.

3. (a) n := 0, Φn := {(y1, y2) | (y1, y2) is a “good” state in MC(S, S)}.

(b) For (y1, y2) ∈ Φn, if ai ∈ Σ(yi) for i = 1, 2, and M(a1) = M(a2), then for each

y′i ∈ β(yi, ai), check whether there exists y′j ∈ β(yj , aj), where i, j = 1, 2, such that

(y′1, y′2) ∈ Φn. If not, Φn+1 := Φn − {(y1, y2)}.

(c) If Φn+1 = Φn or Φn+1 = ∅, then Φ := Φn+1 and stop; Otherwise, n := n + 1, go to

step (b).

4. S is state-recognizable if and only if (y0, y0) ∈ Φ for all y0 ∈ Y0.

The following theorem proves the correctness of Algorithm 4.

Theorem 11 Algorithm 4 is correct, i.e, S is state-recognizable if and only if (y0, y0) ∈ Φ for

all y0 ∈ Y0, where Φ is as computed in Algorithm 4.

Proof: We first prove that Φ is a state-recognizability relation. By step 1, every state in

MC(S, S) is a pair of states reached by indistinguishable traces in S and vice-versa, i.e.,

(y1, y2) in MC(S, S) ⇔ ∃s1, s2,M(s1) = M(s2) s.t.

yi ∈ β∗(Y0, si), for i = 1, 2.

Note that by Definition 11, an element of a state-recognizability relation is a state-pair that

is reached by indistinguishable traces. Thus, the set of state-pairs in a state-recognizability

relation is a subset of state-pairs in MC(S, S) computed in step 1. By step 2, for each (yi, yj) ∈
Φ, conditions 1 and 3 of Definition 11 is satisfied. By step 3, for each (yi, yj) ∈ Φ, conditions

1, 2, and 3 of Definition 11 is satisfied. Thus, Φ is a state-recognizability relation as desired.

Further if by step 4, (y0, y0) ∈ Φ for all y0 ∈ Y0, then by Definition 12, S is state-recognizable.

Next we prove that if S is state-recognizable, then Algorithm 4 computes one state-

recognizability relation. Assume Φ1 is a state-recognizability relation under which S is state-

recognizable. Then we need to show that Φ1 ⊆ Φ. As argued above, by conditions 1 and 3
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of Definition 11 and steps 1 and 2, Φ1 ⊆ Φ0. Also by condition 2 in Definition 11 and step

3, Φ1 ⊆ Φ. Finally since (y0, y0) ∈ Φ1 for each y0 ∈ Y0 and by step 4, Φ1 ⊆ Φ, proving the

correctness of the algorithm.

Remark 14 The complexity of masked-composition of S and S is O(|S|2). The complexity

of marking “good” states is linear in the size of G‖S and quadratic in the size of S, i.e.,

O(|G| × |S|) + O(|S|2). This is because for each (y1, y2) ∈ MC(S, S), we need to check

|Xsyn(y1)| + |Xsyn(y2)| number of event containment relations and |Xsyn(y1)| + |Xsyn(y2)|
number of state marking status. So the total number of checks needed is,

2
∑

(y1,y2)∈Y 2(|Xsyn(y1)|+ |Xsyn(y2)|)

= 2
∑
y2

(
∑
y1

|Xsyn(y1)|) +
∑
y1

(
∑
y2

|Xsyn(y2)|)

≤ 2
∑
y2

|X| × |Y |+
∑
y1

|X| × |Y |

= 2|X| × |Y |[
∑
y1

1 +
∑
y2

1]

= 4|X| × |Y |2 = O(|G| × |S|).

The complexity of computing Xsyn(·) is O(|G| × |S|) and that of MC(S, S) is O(|S|2), and so

the complexity of step 1 is O(|G|× |S|)+O(|G|× |S|)+O(|S|2) = O(|G|× |S|)+O(|S|2). The

complexity of step 3 is linear in the size of MC(S, S), i.e., O(|S|2). Thus, the complexity of

Algorithm 4 of verifying state-recognizability of S is linear in the size of G‖S and quadratic in

the size of S, i.e., O(|G| × |S|) + O(|S|2).
It follows that the complexity of checking state-recognizability of G‖R∗ is O(|G| × (|G| ×

|R∗|)) + O((|G| × |R∗|)2) = O(|G|2 × |R|2) (since |R∗| = |R|). Complexity of checking G‖R∗

is SC is O(|G|2 × |R|). Complexity for checking whether R v G is O(|G| × |R|). Thus, the

complexity of checking the existence of a (Σu,M)-compatible bisimilarity enforcing supervisor

for deterministic-plants is O(|G|2 × |R|2).

5.4 Comparison with Control for Language Specification

In a prior section, we showed that a necessary and sufficient condition for the existence

of a (possibly) nondeterministic supervisor such that the controlled system is bisimilar to a
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(possibly) nondeterministic specification for deterministic-plants is state-achievable-bisimilar

(SAB). In Kumar et al. (2005b), it was shown that a necessary and sufficient condition for the

existence of a (possibly) nondeterministic supervisor for a language specification is (Σu,M)-

achievability (called language-achievability or LA for short). A necessary and sufficient condi-

tion for the existence of a nonblocking deterministic supervisor such that the language of the

controlled system equals a specification language is controllability together with observability

(called language-controllability and observability or LO & LC for short). All the above con-

ditions also apply to deterministic-plants. Thus, it is interesting to compare these conditions

and explore how they are related to each other.

It was shown in Kumar et al. (2005b) that LO & LC is strictly stronger than LA. We show

that SAB is a strictly stronger notion than LA, and the notions of SAB and LO & LC are not

comparable in general. However, it turns out that they are equivalent requirements when the

specification is deterministic and trim.

We first show that the notion of SAB is stronger than LA. Recall the definition of language-

achievability. Let L(R) ⊆ L(G),

(i) L(R) is said to be language-controllable with respect to L(G) and Σu if ∀s ∈
L(R) and ∀a ∈ Σu, sa ∈ L(G) ⇒ sa ∈ L(R). (ii) L(R) is said to be language-

recognizable with respect to L(G) and M if ∀s, t ∈ Σ∗ and ∀a ∈ Σ with M(a) = ε,

sat ∈ L(R)⇒ sa∗t∩L(G) ⊆ L(R). (iii) L(R) is said to be language-achievable with

respect to L(G) if L(R) is language-controllable and language-recognizable, and

∀s, t ∈ Σ∗, ∀a ∈ Σ, b ∈ Σu with M(a) = M(b), sat ∈ L(R) ⇒ {sbt}∩L(G) ⊆ L(R).

Proposition 3 If R is state-achievable-bisimilar, then R is language-achievable.

Proof: Note R is LA if and only if R′ is LA for some R′ ' R (since bisimilarity preserves

languages). We pick R′ to be such that it is SA. (Since R is SAB, such a R′ exists.) So it

suffices to show L(R′) is LA given that R′ is SA. Renaming R′ as R, it suffices to show that

L(R) is LA given that R is SA.

For notational convenience, let xs (resp., qs) and xsa (resp., qsa) be a state reached by a trace

s and sa in G (resp., R), respectively. We first show that if R is SA then L(R) is Σu-controllable.
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Suppose s ∈ L(R) and a ∈ Σu. Since R is SC, by Lemma 10, ∪x∈Xsyn(qs)Σ(x)∩Σu ⊆ Σ(qs)∩Σu.

Note that sa ∈ L(G) implies that a ∈ ∪x∈Xsyn(qs)Σ(x) ∩ Σu. Then a ∈ Σ(qs) ∩ Σu. I.e.,

sa ∈ L(R).

Next we show that if R is SA then L(R) is M -recognizable. We first prove that if sat ∈ L(R)

for M(a) = ε, then san ∩ L(G) ⊆ L(R) for n ≥ 0. Since ε ∈ Σ(qs), a ∈ Σ(qs) and M(a) =

ε, ((xs, qs), (xsa, qsa)) ∈ Φ, where Φ is a state-recognizability relation under which G‖R is

state-recognizable (which can be proved similarly as Lemma 12). Since G is deterministic,

Xsyn((xsa, qsa)) = {xsa}. Thus, Σ(xsa) ∩ Σ((xs, qs)) ⊆ Σ(xsa) ∩ Σ((xsa, qsa)). If saa ∈ L(G),

i.e., a ∈ Σ(xsa), then a ∈ Σ(qsa), establishing base step. Note that since ε ∈ Σ(qs), a ∈
Σ(qsa) and M(a) = ε, for R being SR, ((xs, qs), (xsaa, qsaa)) ∈ Φ. Suppose san ∈ L(R),

i.e., ((xs, qs), (xsan , qsan)) ∈ Φ, then Σ(xsan) ∩ Σ((xs, qs)) ⊆ Σ(xsan) ∩ Σ((xsan , qsan)). If

san+1 ∈ L(G), i.e., a ∈ Σ(xsan), then a ∈ Σ(qsan), i.e., san+1 ∈ L(R), which proves the

induction step.

Knowing san ∩ L(G) ⊆ L(R), next we prove sant ∩ L(G) ⊆ L(R). When |t| = 0, then

san ∩L(G) ⊆ L(R), establishing the base step. Supposing sant′ ∩L(G) ⊆ L(R) for t′ ≤ t (i.e.,

t′ is a prefix of t). Then ((xsat′ , qsat′), (xsant′ , qsant′)) ∈ Φ. Thus, Σ(xsant′) ∩ Σ((xsat′ , qsat′)) ⊆
Σ(xsant′) ∩ Σ((xsant′ , qsant′)). If sant′σ ∈ L(G), i.e., σ ∈ Σ(xsant′), then σ ∈ Σ(qsant′). I.e.,

sant′σ ∩ L(G) ⊆ L(R), which proves the induction step.

Next, we show that if R is SA then R is (Σu,M)-achievable. We first notice that {sb} ∩
L(G) ⊆ L(R) for b ∈ Σu because R is SC. We next prove that {sbt} ∩ L(G) ⊆ L(R). When

|t| = 0, then {sb} ∩L(G) ⊆ L(R), establishing the base step. Supposing {sbt′} ∩L(G) ⊆ L(R)

for t′ ≤ t (i.e., t′ is a prefix of t). Note that ((xs, qs), (xs, qs)) ∈ Φ. Also M(b) = M(a)

and R is SR, then ((xsa, qsa), (xsb, qsb)) ∈ Φ. Then ((xsat′ , qsat′), (xsbt′ , qsbt′)) ∈ Φ. Thus,

Σ(xsbt′)∩Σ((xsat′ , qsat′)) ⊆ Σ(xsbt′)∩Σ((xsbt′ , qsbt′)). If {sbt′σ} ⊆ L(G), i.e., σ ∈ Σ(xsbt′), then

σ ∈ Σ(qsbt′). I.e., {sbt′σ} ∩ L(G) ⊆ L(R), which proves the induction step.

The following example shows that SAB is strictly stronger than LA.

Example 17 Consider L(G) = a(c+d)+bc and a deterministic state machine R with L(R) =

ad + bc, where M(a) = M(b) 6= ε and Σu = ∅. Let xa = α(x0, a) and xb = α(x0, b), then
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Σ(xa) = {c, d} and Σ(xb) = {c}. Suppose R is SAB. Then G‖R∗ = G‖R is SA. Let qa ∈
δ(q0, a) with Σ(qa) = {d} and qb ∈ δ(q0, b) with Σ(qb) = {c}. Then there should exist a

state-recognizability relation Φ such that ((xa, qa), (xb, qb)) ∈ Φ. For this to hold, Σ(xa) ∩
Σ((xb, qb)) ⊆ Σ(xa)∩Σ((xa, qa)) should hold, which is not true since Σ(xa)∩Σ((xb, qb)) = {c},
Σ(xa) ∩ Σ((xa, qa)) = {d}. Thus, R is not SAB, a contradiction to the hypothesis. It is easy

to verify that L(R) is language-recognizable.

Thus, SAB is strictly stronger than LA. Next we show that SAB and LC & LO are not

comparable in general.

Example 18 Consider an example shown in Figure 5.13. The observation mask is given by:

M(b1) = M(b2) and identity mask for the other events. Assume all events are controllable.

Then state-achievable-bisimilar (SAB) reduces to state-recognizable-bisimilar (SRB). We show

that R is not LO but it is SRB, whereas R′ is LO but it is not SRB.
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Figure 5.13 G (left), R (middle), and R′ (right)

R is not LO since ab1, ab2 ∈ L(R) with M(ab1) = M(ab2), ab1b1 ∈ L(R) and ab2b1 ∈ L(G)−
L(R). However, R is SRB. A desired state-recognizability relation Φ ⊆ (X ×Q∗)2 = (X ×Q)2

is given by:

Φ = {((1, A), (1, A)), ((2, B), (2, B)), ((2, C), (2, C)),

((3, D), (3, D)), ((3, E), (3, E)), ((4, F ), (4, F ))}.

Next, R′ is LO since L(R′) = L(G). However, R′ is not SRB. At state (2, B) of G‖(R′)∗ =

G‖R′, M(b1) = M(b2). For b2-successor (3, D), there should exist a b1-successor such that
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the condition 1 of Definition 11 holds. Note that (3, C) is the only b1-successor of (2, B), and

Xsyn((3, D)) = {3},

[Σ(3) ∩ Σ((3, C)) = {b1, b2}] 6⊆ [Σ(3) ∩ Σ((3, D)) = {b2}],

implying R′ is not SRB.

Although SAB and LC & LO are not comparable in general, they are equivalent when R

is deterministic and trim as shown next.

Proposition 4 Given deterministic G, deterministic and trim R with R v G, R is state-

achievable-bisimilar if and only if R is language-controllable & language-observable.

Proof: We first show the necessity. Since G and R are deterministic, G||R∗ = G‖R is

deterministic, and so (G||R)Φ and (G||R)Φ,Σu = S are deterministic. I.e., supervisor S such

that G||S ' R can be chosen to be deterministic. G||S ' R implies L(G||S) = L(R) and

Lm(G||S) = Lm(R), and so since S is deterministic, R is LC & LO.

For the sufficiency, when L(R) = pr(Lm(R)) is LC & LO, there exists a deterministic S

such that L(G||S) = L(R) and Lm(G||S) = Lm(R). Since G||S and R are both deterministic,

their language model equivalence implies their bisimulation equivalence, i.e., G||S ' R. So, it

follows that R is SAB.

5.5 Conclusion

We extended the small model theorem by showing that a control and observation compatible

supervisor for enforcing bisimulation equivalence between the specification and the controlled

system exists if and only if it exists over a certain finite state space, namely the power set of

Cartesian product of the plant and the specification state spaces. This proves the decidability

of bisimilarity enforcing control under partial observation for general nondeterministic systems

and nondeterministic specifications. The results are illustrated through a simple example.

The existence condition we find for the special case of deterministic-plants is polynomially

verifiable, whereas the complexity of synthesizing a supervisor (when one exists) is singly
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exponential. These complexities are similar to the ones for control under partial observation

in the completely deterministic setting Tsitsiklis (1989).

We obtained a necessary and sufficient condition for the existence of a supervisor in terms of

the notion of state-achievable-bisimilar introduced in this paper, and presented an algorithm

of polynomial complexity for verifying it. The presence of partial observation poses a new

challenge in the setting of nondeterministic specifications. It turns out certain properties

that are relevant in the setting of partial observation such as observation-compatibility are

not preserved under bisimilarity. So unlike the deterministic setting where when a supervisor

exists, the specification itself can be chosen as a supervisor, we cannot use the specification

itself as a supervisor. An elaborate computation is required to show that the composition of

the plant and the specification when suitably transformed through certain state-mergers can

be used as a supervisor. Further the state-mergers are unique: Unlike the usual situations

where states to be merged belong to certain equivalence class, the states to be merged in our

case don’t form a partition, rather only a cover (see Algorithm 2). Such a construction (i.e.,

one involving state-mergers based on a cover rather than a partition) is quite novel, and to

the best of our knowledge the first in the literature dealing with supervisory control theory.

This particular idea of state-mergers over a cover (rather a partition) may be useful in future

in other problems of relevance to supervisory control.

We have identified the condition of state-achievable-bisimilar for the existence of a super-

visor. When this condition is not satisfied, the specification (or the plant) must be altered.

An interesting future direction to consider is developing a method for “minimally altering” the

specification so that the above required condition is satisfied.
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CHAPTER 6. SUPERVISORY CONTROL FOR SIMULATION

EQUIVALENCE

In this chapter, we study the control of DESs to ensure simulation equivalence of the

controlled system and a given (nondeterministic) specification. The simulation equivalence

can express specifications in the temporal logic of ACTL* (the universal fragment of CTL*)

Bensalem et al. (1992); Maidi (2000). The expressivity of simulation equivalence may suffice for

certain applications and in which case the more general requirement of bisimulation equivalence

need not be imposed. Such a choice results in a complexity gain since as we demonstrate in

the chapter, the simulation equivalence control problem remains polynomially solvable. The

results are further generalized to the “range” control problem, where the controlled behavior

must lie in a range specified by a lower and an upper bound behavior (ordering is defined by

the simulation relation). We show that our necessary and sufficient condition for the existence

of a similarity enforcing supervisor for deterministic plant specializes to the condition of “state-

controllable-similar”, which is another new concept introduced in this chapter.

6.1 Supervisory Control for Simulation Equivalence

In this section, we study the control of a (nondeterministic) plant to ensure simulation

equivalence of controlled plant and given (nondeterministic) specification. In order to find a

Σu-compatible similarity enforcing supervisor we examine the class of all S such that G‖S ∼ R.

It turns out that this class possesses an infimal elements and we provide an algorithm for the

computation of such an element.

The following lemma is needed before we proceed.

Lemma 14 Given G1 v G2 and G′
1 v G′

2, it holds that G1‖G′
1 v G2‖G′

2.
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Proof: By Theorem 3, G1‖G′
1 v G1 and G1‖G′

1 v G′
1. Also since G1 v G2 and G′

1 v G′
2,

it follows that G1‖G′
1 v G2 and G1‖G′

1 v G′
2. Therefore, by Theorem 3, we have G1‖G′

1 v
G2‖G′

2.

Let S := {S | S Σu-compatible, G‖S ∼ R}. The following lemma shows that S possess an

infimal element.

Lemma 15 S1, S2 ∈ S implies S1‖S2 ∈ S.

Proof: We need to prove S1‖S2 is Σu-compatible and G‖(S1‖S2) ∼ R. Since S1 and S2

are Σu-compatible, from Definition 10, it is obvious that S1‖S2 is Σu-compatible. Next we

show G‖(S1‖S2) ∼ R, for which we need to show G‖(S1‖S2) v R and R v G‖(S1‖S2). For

i = 1, 2, Si ∈ S implies G‖Si ∼ R, which further implies G‖Si v R. From Theorem 3, we have

(G‖S1)‖(G‖S2) v G‖Si v R. Next note that (G‖S1)‖(G‖S2) = (G‖G)‖(S1‖S2) and G v G‖G
(follows from Lemma 14). So from Lemma 14, we have G‖(S1‖S2) v (G‖G)‖(S1‖S2), i.e.,

G‖(S1‖S2) v (G‖S1)‖(G‖S2) v R. Similarly, one can show R v G‖(S1‖S2).

Next we present an algorithm for computing an element of INF (S) when S is nonempty.

Algorithm 5 Suppose G, R and Σu are such that S 6= ∅. Then the following algorithm

computes an automaton Ru ∈ INF (S). Ru = (Q ∪ {dump}, Σ, δu, Q0, Qm), where

∀q ∈ Q ∪ {dump}, σ ∈ Σ : δu(q, σ) :=





δ(q, σ) if σ ∈ Σ(q)− {ε}
dump if σ ∈ Σu − Σ(q)

δ(q, ε) if σ = ε

In other words, Ru is obtained by adding in R an extra dump state and adding the “missing”

uncontrollable transitions from each state to the dump state.

The following theorem proves the correctness of the algorithm.

Theorem 12 Algorithm 5 is correct. I.e., Ru is Σu-compatible, and S 6= ∅ implies Ru ∈
INF (S).

Proof: From the construction of Ru, we know that each σ ∈ Σu is defined at each state of Ru.

So Ru is Σu-compatible.
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To prove the infimality of Ru under nonemptiness of S, we need to prove that if there exists

a Σu-compatible S such that G‖S ∼ R, then G‖Ru ∼ R and Ru v S. We first prove Ru v S.

Note that G‖S ∼ R implies R vΦ1 S. Using the fact that S is Σu-compatible, it can be show

that Ru vΦ2 S, where

Φ2 := Φ1 ∪ {(dump, y)|∃(q, y′) ∈ Φ1, σ ∈ Σu : δ(q, σ) = dump, y ∈ β(y′, σ)}.

Next, since Ru v S, from Lemma 14, G‖Ru v G‖S. This together with the fact G‖S v R

implies G‖Ru v R. It remains to show that R v G‖Ru. Since Ru is obtained by adding an

extra state and extra transitions, it is obvious that R v Ru. The fact R v G follows from the

fact that R v G‖S v G. This completes the proof.

The following result follows from Theorem 12 and provides a necessary and sufficient con-

dition for the existence of a similarity enforcing supervisor.

Theorem 13 Given G and R, there exists a Σu-compatible supervisor S such that G‖S ∼ R

if and only if G‖Ru ∼ R (or equivalently, G‖Ru v R v G), where Ru is as computed in

Algorithm 5. Further when the existence condition holds, Ru can be chosen as a supervisor.

Proof: Sufficiency is obvious since S can be chosen as Ru. For necessity, suppose the desired S

exists. Then S 6= ∅ and so from Theorem 12, Ru ∈ INF (S) ⊆ S. Since Ru ∈ S, the necessity

follows.

Remark 15 The complexity of checking G‖Ru v R is linear in the size of the plant and

quadratic in the size of the specification, whereas R v G can be checked linearly in the size of

G and R. Also, Ru can be used as supervisor, whose can be computed linearly in the size of

R. (Ru has just an extra added state and compared to R.)

So far we have studied the “target” control problem when the controlled system G‖S
and specification R are simulation equivalent, i.e., G‖S ∼ R. This is equivalent to saying

R v G‖S v R, which is a special case of a more general “range” control problem A v G‖S v E.

Here the automaton A specifies a minimally adequate behavior, whereas the automaton E

specifies a maximally acceptable behavior. Note that in a “target” control problem, A = E = R.

In the remainder of the section we extend our results to the range control problem.
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Given an automaton R and the set of uncontrollable events, we have shown the computation

of Ru in Algorithm 5. We show in the next lemma that the simulation relation is preserved

under such a computation.

Lemma 16 Given R1 v R2, it holds that R1u v R2u.

Proof: R1 v R2 implies exists a simulation relation Φ1 ⊆ Q1×Q2 such that Q01×Q02 ⊆ Φ1.

Also,

Φ1 = {(q1, q2) | q1 v q2}.

Define a relation Φ2 ⊆ (Q1 ∪ {dump1})× (Q2 ∪ {dump2}) as:

Φ2 = Φ1 ∪ {(dump1, dump2)}.

Then it is easy to see that Φ2 is a simulation relation and R1u vΦ2 R2u.

We next present a necessary and sufficient condition for the “range” control problem.

Theorem 14 Given plant G and lower and upper bound specifications A v E, there exists

a Σu-compatible supervisor S such that A v G‖S v E if and only if A v G and G‖Au v E.

Further when the existence condition holds, Au can be chosen as a desired supervisor.

Proof: (If) Let S = Au, where Au is constructed by Algorithm 5 and is Σu-compatible. Then

A v G and A v Au implies A v G‖Au, which together with G‖Au v E, yields A v G‖Au v E.

This proves the sufficiency.

(Only If) By Corollary 1, A v G‖S implies A v G. It remains to show that G‖Au v E.

Suppose G‖S := R′, then A v G‖S v E implies A v R′ v E. By Lemma 16, A v R′ implies

Au v R′
u. By Lemma 14, we have G‖Au v G‖R′

u. Also, G‖S = R′ implies G‖S ∼ R′, then by

Theorem 13, G‖R′
u v R′. Combining previous inequations yields G‖Au v G‖R′

u v R′ v E.

This completes the proof.

Remark 16 The complexity for checking G‖Au v E is linear in the sizes of A, G and E. Also,

from the proof of Theorem 14, Au can serve as a supervisor for the “range” control problem,

where Au can be computed linearly in size of the lower bound specification A.
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The following example serves to illustrate the simulation equivalence enforcing control.

Example 19 Consider a simple vending machine that delivers a cookie or a candy in exchange

for a coin, whose state machine model is shown in Figure 6.1. Upon getting a coin, the vending

machine nondeterministically transits to one of two states. At each state, user can wait for

a delivery or push a button. In the first state if the user chooses to wait, the machine times

out delivering a cookie; whereas if the user chooses to push the button the machine transits to

the second state and remains there with additional pushes of the button. In the second state,

the pushing of the button does not cause a state change but when the user opts to wait, the

machine times out and delivers either a candy or a cookie. Once a delivery is completed, the

machine returns to its initial state. The timeout event is deemed uncontrollable, whereas the

other events are controllable.
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Figure 6.1 Model G of vending machine (left) and its specification R (right)

Note that in the above vending machine example it is not possible for a user to receive

a candy with certainty, which is an undesirable behavior. To rectify this situation, a desired

specification is shown in Figure 6.1. According to the specification, after a user inserts a coin,

the vending machine nondeterministically transits to one of two states. However, regardless of

the state reached, if the user chooses to wait, the machine delivers a cookie; whereas if the user

chooses to push the button at least twice (before timeout), the machine delivers a candy. If

the user opts to push the button once and then to wait, then the machine delivers a cookie or a
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candy depending on the initial nondeterministic transition made. Note since the specification

allows such a nondeterministic choice, it is not adequate to use a language to capture the

behavior of the specification.

The above specification can be expressed in a temporal logic syntax as follows: After

receiving a coin, for all paths, deliver a cookie if the button is not pushed (before timeout);

deliver a candy if the button is pushed at least twice (before timeout); deliver a cookie or a

candy if the button is pushed only once (before timeout). This is an instance of a “universal”

temporal logic specification (no existential quantifier is needed to express the specification).

Since a universal temporal logic specification is preserved under simulation equivalence, it

suffices to require that the controlled plant and specification be simulation equivalent.

Our goal is to find a Σu-compatible supervisor S for the vending machine such that G‖S ∼
R. We first check whether R v G. We find the following simulation relation Φ1 exists between

R and G:

Φ1 = {(q1, x1), (q2, x2), (q3, x3), (q4, x4), (q5, x3), (q6, x5)},

implying R vΦ1 G. Next, we check whether G‖Ru v R. We construct Ru using Algorithm 5,

and the result is depicted in Figure 6.2. The synchronous composition of Ru with plant, namely

G‖Ru, is shown in Figure 6.2.
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The following simulation relation Φ2 exists between G‖Ru and R:

Φ2 := {((x1, q1), q1), ((x2, q2), q2), ((x3, q3), q3), ((x4, q4), q4), ((x5, q4), q4),

((x2, q3), q3), ((x3, q2), q2), ((x3, q5), q5), ((x5, q6), q6)},

implying G‖Ru vΦ2 R. It follows from Theorem 13 that there exists a Σu-compatible supervi-

sor to enforce simulation equivalence between the controlled system and the specification, and

Ru serves as such a supervisor.

6.2 Specialization to Deterministic Case

The results obtained in section 6.1 are applicable to deterministic plants. However the

special case of deterministic plants is of separate interest since a weaker condition may be

required for the existence of a supervisor. In fact this happens to be the case when the spec-

ification is of bisimulation equivalence, where it was shown that the bisimulation equivalence

control problem can be solved polynomially when plant model is deterministic. (No polynomial

algorithm is known when the plant is nondeterministic.) A necessary and sufficient condition

for the existence of a bisimilarity enforcing supervisor for a deterministic G and a possibly

nondeterministic R is that R be simulated by G and R∗ be state-controllable with respect to

G and Σu (Recall R∗ is the NSM obtained by replacing the transition function δ of R by the

transition function δ∗ and R∗ = R in the absence of ε-transitions.) In this section we show

that if we only require the simulation equivalence of the controlled plant and the specification,

then a weaker condition than state-controllability is required (as expected). In this section

we introduce that weaker condition, called state-controllable-similar, prove its necessity and

sufficiency, and present a way to test it.

Definition 16 Given automata G and R with L(R) ⊆ L(G), we say R is a state-controllable-

similar (SCS) with respect to G and Σu if it is simulation equivalent to a system R′ that is

state-controllable with respect to G and Σu.

We recall that the language-controllability requires the following:

s ∈ L(R), σ ∈ Σu such that sσ ∈ L(G) ⇒ ∃q ∈ δ∗(Q0, s), σ ∈ Σ(q).
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It is clear that when R is deterministic, state-controllability of R with respect to G and Σu

reduces to language-controllability of L(R) with respect to L(G) and Σu. Also it can be easily

deduced that Σu-compatibility implies state-controllability, i.e., the latter is a weaker notion.

The notion of SCS is stronger than language-controllable (LC) and weaker than state-

controllable (SC). Recall that for deterministic G and possibly nondeterministic R with L(R) ⊆
L(G), LC serves as a necessary and sufficient condition for a language equivalence control,

whereas SC serves as a necessary and sufficient condition for a bisimulation equivalence control.

We show that the “intermediate” condition of SCS serves as a necessary and sufficient condition

for a simulation equivalence control. The next example illustrates the above various concepts

of controllability.

Example 20 Consider automata G = R, R′, and R′′ shown in Figure 6.3, and suppose Σu =

{b}. Notice that in G, uncontrollable event b is defined after trace a. R′′ is SC since at
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Figure 6.3 R (First), R′ (second), R′′ (third), Ru (fourth) and R‖Ru (fifth)

state 2 reached by trace a, event b is defined. It follows that R′′ is also SCS and LC. On the

other hand, R′ is not SC since at state C reached by trace a, event b is undefined. However

R′ is SCS, since R′ ∼ R′′, where R′′ is SC. Also, similarity of R′ and R′′ implies their language

equivalence. So since R′′ is LC, so is R′. Finally, R is LC since L(R) = L(G). However R is

not SC since at state C reached by trace a, event b is undefined. Also R is not SCS since it

can be argued that one cannot find a SC R such that R ∼ R: For the reason that R simulates

R, event c must be defined at some state reached by trace a in R. Further for the reason that

R is SC, event b must be defined at this state. I.e., there must exist a state in R reached by
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trace a where events b and c are both defined. Since none of the states of R reachable by trace

a have both events b and c defined, R cannot simulate R.

Next, we establish a necessary and sufficient condition for the existence of a similarity

enforcing control for deterministic plants.

Theorem 15 Given deterministic plant G and possibly nondeterministic specification R, ex-

ists a Σu-compatible supervisor S such that G‖S ∼ R if and only if R is simulated by G and

state-controllable-similar with respect to G and Σu.

Proof: (Only If) From Theorem 13, G‖S ∼ R implies G‖Ru v R v G. Since R v G and

R v Ru (from construction of Ru), it follows that R v G‖Ru. So, G‖Ru ∼ R. By construction,

Ru is Σu-compatible and since G is deterministic, from Lemma 8, G‖Ru is state-controllable.

Since R is simulation equivalent to G‖Ru, it follows that R is state-controllable-similar.

(If) Let R be similar to R′ that is SC. Define S to be R′ with each state augmented with

self-loops on all the undefined uncontrollable events of that state. Then G‖S ' G‖R′ (by

Lemma 2). Since R′ ∼ R v G, it follows that R′ v G. Also, R′ v R′, and so R′ v G‖R′.

On the other hand, G‖R′ v R′ by Theorem 3, and so we have G‖R′ ∼ R′. It follows that

G‖S ' G‖R′ ∼ R, which completes the proof.

The next theorem presents a method to verify the property of SCS of R with respect to G

and Σu.

Theorem 16 Given deterministic G and R v G, R is SCS with respect to G if and only if

G‖Ru v R.

Proof: For deterministic G, by Theorems 13 and 15 we have the equivalence:

[R is G-simulated and G‖Ru v R] ⇔ [R is G-simulated and R is SCS].

This can be rewritten as,

[R is G-simulated] ⇒ [G‖Ru v R ⇔ R is SCS].
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Remark 17 From Theorem 16 we can test whether R is SCS by testing whether G‖Ru v R.

It follows that the complexity of checking SCS is linear in the size of G and quadratic in the

size of R. The complexity of checking R is simulated by G is linear in sizes of G and R. Thus

the complexity of checking the existence of a supervisor for a similarity enforcing control of

deterministic plants is O(|G| × |R|2).

In the following corollary we show that when the existence condition of Theorem 15 holds,

Ru can be chosen as a desired supervisor.

Corollary 3 Given deterministic plant G and possibly nondeterministic specification R, if R

is simulated by G and state-controllable-similar with respect to G, then Ru as computed in

Algorithm 5 can serve as a similarity enforcing supervisor, i.e., G‖Ru ∼ R.

Proof: By Algorithm 5, Ru is Σu-compatible. Since R v G‖Ru (see the proof of Theorem 15)

and G‖Ru v R (see Theorem 16), we obtain G‖Ru ∼ R as desired.

Remark 18 We showed in Theorem 16 that when G is deterministic and R is simulated by

G, R being SCS is equivalent to G‖Ru v R. In general, however (when G is nondeterministic),

R being SCS is stronger than G‖Ru v R. This can be illustrated by considering automaton

G = R drawn in Figure 6.3. Ru and G‖Ru = R‖Ru are also drawn in Figure 6.3. It can be

verified G‖Ru v R. However, as explained in Example 20, R is not SCS.

We illustrate the results of this section through an example.

Example 21 Consider a message transmission system, shown in Figure 6.4, that sends mes-

sages from a sender to a receiver.

sender message center routing center

secure channel

unsecure channel

receiver

acknowledgment

m1/m2 forward
s

u

Figure 6.4 Block diagram of a message transmission system
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Two types of messages are generated by the sender, m1 and m2, which are first received

by a message center. The messages are then forwarded (event f) to a routing center which

decides along which channels the messages be routed. Two types of channels, secure (s)

and unsecure (u), are available for routing. Upon a successful reception, an acknowledgment

(a) is sent by the receiver to the sender, allowing transmission of another message. The

acknowledgment is generated automatically, and is treated as an uncontrollable event. The

deterministic automaton G, drawn in Figure 6.5, models the above behavior.

A specification for the legal behavior of the system is also drawn in Figure 6.5. It requires

that messages of type 1 (m1) be transmitted over the secure channel, while no such restriction

is imposed on the type of channel to be used for the transmission of the messages of the second

type (m2). However, once a message of type 2 gets forwarded, it (nondeterministically) finds

the routing center to be in one of its two states: In the first state, the transmission occurs on

the secure channel, whereas in the second state, on the unsecure channel.

a

s
u

x

x1

x

x0

1m m 2

f

2

3

q

q

0

a

1m m 2

1

f f f

s u

4

q

q q2

q3

5

Figure 6.5 Model G of message transmission system (left) and its specifi-
cation R (right)

It is easy to verify that the specification language is a controllable sublanguage of the plant

language. If we apply the supervisory control results from the deterministic setting and use

a deterministic generator of the specification language as a supervisor, the controlled system

will be a deterministic generator of the specification language (since the plant is given to be

deterministic, whereas supervisor is constructed to be deterministic, and plant language is a
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superlanguage of the specification language). A deterministic generator of the specification

language however will allow both the choices (secure as well as unsecure channel) for the

routing of all messages of type 2 after they have arrived at the routing center. This situation

is not permitted by the desired specification, and so the specification will be violated.

Our goal is to find a Σu-compatible supervisor S for the message transmission system such

that G‖S ∼ R. To do this, we first check whether R is simulated by G (i.e., R v G). We find

the following simulation relation exists between R and G:

Φ1 = {(q0, x0), (q1, x1), (q2, x1), (q3, x2), (q4, x2), (q5, x3)},

implying R vΦ1 G.

Next, we need to check whether R is SCS. By Theorem 16, we need to check whether

G‖Ru v R. For this we need to construct Ru using Step 1 of Algorithm 5. The constructed Ru

is depicted in Figure 6.6. The synchronous composition of G and Ru is shown in Figure 6.6.

We find the following simulation relation Φ2 exists between G‖Ru and R:
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Figure 6.6 Ru (left) for R and G‖Ru (right) for G and R of Figure 6.5

Φ2 = {(x0, q0), q0), ((x1, q1), q1), ((x1, q2), q2), (((x2, q3), q3), (x2, q4), q4), ((x3, q5), q5)},

i.e., G‖Ru vΦ2 R. Thus we conclude that there exists a Σu-compatible supervisor to enforce

simulation equivalence between the controlled system and the specification, and Ru can serve
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as a supervisor.

To verify whether using Ru as a supervisor yields G‖Ru ∼ R, we search for a similarity

relation between the controlled system G‖Ru and the specification R. A similarity relation Φ3

between G‖Ru and R is given by:

Φ3 = {(x0, q0), q0), ((x1, q1), q1), ((x1, q2), q2), ((x2, q3), q3),

((x2, q4), q4), ((x3, q5), q5)(q0, (x0, q0)), (q1, (x1, q1)),

(q2, (x1, q2)), (q3, (x2, q3)), (q4, (x2, q4)), (q5, (x3, q5))}.

A meaning for the control being exercised is as follows. In the plant model, the routing

center can be thought to have a single queue for all arrived messages. When the routing center

is ready to put a message on a channel it picks one of the messages from the queue (say from

the head of the queue) and places it on either of the two channels. The controller restricts this

behavior of the routing center by essentially implementing two queues, one for each channel

(and not one for each message). Upon arrival, messages of type 1 are always placed in the

queue for the secure channel, whereas the messages of the type 2 can be placed in either of the

two queues. The exact channel selection for a message of type 2 can be done for example based

on the lengths of two queues. However since the lengths of the two queues at any given time

are not known in advance, the selection of a channel essentially occurs nondeterministically for

each message of type 2.

6.3 Simulation Equivalence via Deterministic Control

The condition G‖Ru v R v G (or equivalently, G‖Ru ∼ R v G), is necessary and

sufficient for the existence of a similarity enforcing supervisor. When a supervisor exists, Ru

can be chosen to be one. Clearly, Ru is deterministic if and only if R is deterministic. But a

deterministic supervisor may exist even when R is not deterministic, and we present a neces-

sary and sufficient condition for the same. The point of this exercise is to show two things,

(i) existence condition for deterministic supervisor is stronger than that for nondeterministic

one (this is to be expected), and (ii) the time complexity of verifying existence of a determin-
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istic supervisor is exponential. Thus we can draw the conclusion that it is preferable to opt

for a nondeterministic supervisor. The following theorem presents a necessary and sufficient

condition for its existence. We use det(R) to denote the deterministic generator of L(R).

Theorem 17 Given G and R, there exists a Σu-compatible deterministic supervisor S such

that G‖S ∼ R if and only if

• R v G,

• L(R) is controllable with respect to L(G) and Σu, and

• G‖det(R) v R.

Proof: (Only if) Since existence of similarity enforcing supervisor (G‖S ∼ R) implies existence

of a language enforcing supervisor (L(G‖S) = L(R)), L(R) must be controllable with respect to

L(G) whenever a similarity enforcing supervisor exists. In other words, a necessary condition

is that L(R) is controllable. Next, G‖S ∼ R implies R v S and R v G. Since R v S implies

L(R) ⊆ L(S) and Lm(R) ⊆ Lm(S), which further implies det(R) v det(S), and further since

det(S) = S, we have det(R) v S. This implies, G‖det(R) v G‖S. Combining this with

G‖S v R (since G‖S ∼ R), we obtain G‖det(R) v G‖S v R. This proves the necessity.

(If) For the sufficiency, choose S′ to be det(R). Then S′ is deterministic. Since det(R) is

controllable, S′ is language-controllable (as well as state-controllable). Further, G‖det(R) v R

implies G‖S′ v R. For the reverse, since R v G and since R v det(R), we have R v
G‖det(R) = G‖S′. Thus we have shown G‖S′ ∼ R. We define S to be S′ with each state of

S′ augmented with self-loops on all the undefined uncontrollable events of that state. Then S

is Σu-compatible. Further since S′ is state-controllable, G‖S′ ' G‖S (by Lemma 2). Further

since G‖S′ ∼ R, we also have G‖S ∼ R.

Remark 19 The complexity of checking the existence of a similarity enforcing deterministic

supervisor using the condition of Theorem 17 is linear in the size of plant and exponential in

the size of specification (due to the need for the computation of a deterministic automaton that

accepts the same language as that accepted by the specification automaton). Requiring super-

visor to be deterministic, makes the problem computationally more expensive. This situation
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is similar to control under partial observation for language specification. The deterministic su-

pervisor synthesis problem in that setting is known to be NP-complete Tsitsiklis (1989), but it

is shown to be of polynomial complexity when the supervisor is allowed to be nondeterministic

Kumar et al. (2005b).

Let us revisit the message transmission system example studied in Section 6.2.

Example 22 Our goal it to find a deterministic Σu-compatible supervisor S for the message

transmission system such that G‖S ∼ R. Condition 1 in Theorem 17 is verified in Example 6.7.

In Example 6.7 it was also shown that R is SCS, which implies R is LC, which establishes

the second condition. So next we check condition 3. det(R) as well as G‖det(R) are drawn in

Figure 6.7. Since no state of R can simulate the state x2q4 of G‖det(R), it follows that G‖det(R)

cannot be simulated by R. Therefore, there does not exist a Σu-compatible deterministic

supervisor S, such that G‖S ∼ R. Note that we showed earlier that a nondeterministic

supervisor exists for this system.
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Figure 6.7 det(R) (left) and G‖det(R) (right) for G and R of Figure 6.5

6.4 Conclusion

The chapter studied the problem of supervisory control for enforcing simulation equiva-

lence between the controlled plant and the specification. Through our work we showed that the
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simulation equivalence represents a nice compromise between the complexity of control speci-

fication vs. its expressiveness. While the bisimilarity enforcing control is the most expressive,

the best known complexity for such a control is doubly exponential in the sizes of the plant and

the specification. On the other hand, while a language equivalence control is polynomially solv-

able, it is the least expressive. A simulation equivalence specification is more expressive than

a language equivalence specification, yet it remains polynomially solvable. (The complexity

turns to be an order higher in the specification size when compared to a language equivalence

specification.)

We presented necessary and sufficient conditions for the existence of similarity enforcing

supervisors for nondeterministic and also for deterministic plants. Our results are construc-

tive and find a supervisor when one exists. Both the target and range control problems are

studied. We also presented a condition for the existence of a similarity enforcing deterministic

supervisor.
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CHAPTER 7. INTERACTION AND CONTROL VIA PRIORITIZED

SYNCHRONOUS COMPOSITION UNDER MASK

In this chapter, we introduce the notion of prioritized synchronous composition under mask

(PSCM) to model interaction/control of partially observed discrete event systems, and study

the control of DESs via PSCM for both language equivalence and bisimulation equivalence.

In PSCM, each system has its own event priority set. At any given state a system enables

all priority events that it can execute at that state, together with all non-priority events. An

event is enabled in the composition (i.e., globally enabled) if and only if it is enabled by all

interacting systems (i.e., locally enabled by all). A globally enabled event that is executable by

one of the systems, can occur in the composed system upon “initiation” by a system that can

execute it. Then other systems track it by executing an observation indistinguishable event.

If the event is unobservable to or if no observationally indistinguishable events are defined in

one of the systems, then that system does not participate in tracking. The transition in the

composed system is labeled by the initiating event (and not by the tracking event).

We established a link between PSCM and PSC (and thereby SSC) under certain constraints

on the priority sets and the mask functions: PSCM of two systems can be alternatively obtained

by first augmenting individual systems, and next computing the PSC of the augmented systems.

For this to work, the priority sets of the two systems must exhaust the entire event set, and

each event must be observable to a system having priority over that event. These constraints

are naturally met in supervisory control where a plant has priority over each event and can also

“observe” each event. Note while MPSC is always convertible to PSC (through unmasking of

the PSC of masked systems), this is not the case with PSCM, showing its generality over PSC.

Similarly, while PSC and MPSC are known to be associative, this is not the case with PSCM
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as is shown by an example.

Through the introduction of PSCM we are able to relax the restriction on control that

MPSC imposes. We show that when PSCM is adopted as a mechanism of interaction, not only

the control & observation-compatibility requirements are removed of a supervisor, the existence

condition is given by achievability Kumar et al. (2005a) that is weaker than controllability

and observability combined. (The weaker condition is required since we allow supervisors

to be nondeterministic, whereas the conditions of controllability and observability combined

are required for the existence of a deterministic supervisor.) This suggests that the notion

of PSCM, presented in the paper, is an appropriate generalization of PSC to account for

partial observations. Also, both the existence verification and the synthesis of a PSCM-based

supervisor can be performed polynomially: The existence verification is linear in the plant

size and quadratic in the specification size, whereas the synthesis is linear in the specification

size. The results on PSCM-based control presented in the paper have benefited from the past

work of our group Kumar et al. (2005a) that laid the foundation of nondeterministic control

and introduced the notion of achievability as a condition for existence of a nondeterministic

supervisor under partial observation. We also show that when control is exercised via PSCM,

the the small model theorem remains valid by showing that a PSCM-based supervisor for

enforcing bisimulation equivalence between the specification and the controlled system exists

if and only if it a SSC-based supervisor exists over a certain finite state space, namely the

power set of Cartesian product of the plant and the specification state spaces.

Earlier we have defined an observation mask to be a function, M : Σ → ∆. This induces the

function M−1M : Σ → 2Σ that maps each σ ∈ Σ to a set of observationally equivalent events

M−1M(σ) ⊆ Σ, where such sets form a partition of the set Σ. It is sometimes convenient to

represent an observation mask in terms of such a partition it induces. In this chapter, with

a slight abuse of notation, we use M(σ) to denote the set of events that are observationally

equivalent to σ, i.e., the observation mask is now viewed as a map, M : Σ → 2Σ. Since this

alternative representation of an observation mask is limited to this last chapter, it will not

cause any confusion with the earlier representation. For σ ∈ Σ, we use M(σ) ⊆ Σ to denote
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the set of σ-indistinguishable events. σ ∈ Σ is said to be unobservable if σ ∈ M(ε); σ is said to

be completely observable if M(σ) = {σ}. The set of unobservable events is M(ε), and the set

of completely observable events is denoted Σo.

7.1 Prioritized Synchronization under Mask

In this section, we formalize the notion of prioritized synchronous composition under mask

(PSCM) and study its properties. PSCM generalizes the prioritized synchronization of systems

to incorporate partial observation. In PSCM, each system possesses an event priority set

and an observation mask. The observation mask is not required to be priority-consistent as

in MPSC. In Kumar and Heymann (2000b), it was shown that MPSC can alternatively be

computed by “unmasking” the PSC of “masked” systems, thereby established a link between

MPSC and PSC. In this section, we show that when certain constraints are imposed on the

priority sets and observation masks, the PSCM of two systems can alternatively be obtained by

first “augmenting” each of the systems, and next computing the PSC of augmented systems.

Note that although MPSC can always be transformed to PSC via “pre-masking” and “post-

unmasking”, PSCM can only be transformed to PSC under certain restrictions, showing the

generality of PSCM over PSC.

In PSCM, an event is “locally” enabled at a certain state of a system if it is executable at

that state or is a non-priority event. An event is enabled in the composition (i.e., “globally”

enabled) if and only if it is enabled by all interacting systems (i.e., locally enabled by all). A

globally enabled event that is executable by one of the systems, can occur in the composed

system upon “initiation” by a system that can execute it. Then other systems track it by

executing an observation indistinguishable event. If the event is unobservable to or if no

observationally indistinguishable events are defined in one of the systems, then that system

does not participate in tracking. The transition in the composed system is labeled by the

initiating event (and not by the tracking event).

Since any executable event is automatically enabled, and since a system cannot block

events outside its priority set (meaning they always remain enabled) or an ε-transition, the set
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of enabled “events” at a state xi of Gi is Σ(xi) ∪ Ac
i ∪ {ε}, the set of executable events at xi

together with the non-priority events and all ε-transitions. We denote this as,

Σe(xi) := Σ(xi) ∪Ac
i ∪ {ε}.

An event is enabled at a state (x1, · · · , xn) of PSCM composed systems {Gi, i ≤ n} if

and only if it is enabled at state xi of Gi. In other words, the set of enabled events at state

(x1, · · · , xn) of the composition is given by,

Σe((x1, · · · , xn)) :=
n⋂

i=1

Σe(xi)(
n⋂

i=1

[Σ(xi) ∪Ac
i ]) ∪ {ε}.

Next we formally define the notion of PSCM.

Definition 17 For i = 1, 2, consider system Gi = (Xi,Σ, αi, X0i), possessing event priority

set Ai, and observation mask Mi. Then the prioritized synchronous composition under mask

(PSCM) of G1 and G2 is given by

G1
M1
A1
‖M2

A2
G2 = (X1 ×X2, Σ, α, X01 ×X02),

where for x1 ∈ X1, x2 ∈ X2 and σ ∈ Σ,
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α((x1, x2), σ) :=





α1(x1, σ)× α2(x2, σ
′), if





σ ∈ Σe((x1, x2)),

α1(x1, σ) 6= ∅,
α2(x2, σ

′) 6= ∅,
σ′ ∈ M2(σ) 6= M2(ε)

α1(x1, σ
′)× α2(x2, σ), if





σ ∈ Σe((x1, x2)),

α1(x1, σ
′) 6= ∅,

α2(x2, σ) 6= ∅,
σ′ ∈ M1(σ) 6= M1(ε)

α1(x1, σ)× {x2}, if





σ ∈ Σe((x1, x2)),

α1(x1, σ) 6= ∅,
[ε ∈ M2(σ)

∨
α2(x2, M2(σ)) = ∅]

{x1} × α2(x2, σ), if





σ ∈ Σe((x1, x2)),

α2(x2, σ) 6= ∅,
[ε ∈ M1(σ)

∨
α1(x1, M1(σ)) = ∅]

∅, otherwise
α((x1, x2), ε) := (α1(x1,M1(ε))× {x2}) ∪ ({x1} × α2(x2,M2(ε))).

Note in all clauses, the executable event σ is also enabled in the composition (σ ∈ Σe((x1, x2))).

In the first clause, σ is executable at x1 (α1(x1, σ) 6= ∅). G1 initiates σ by transitioning to a

state in α1(x1, σ), and G2 tracks by executing an M2-indistinguishable event σ′ ∈ M2(σ) 6=
M2(ε) that is defined at state x2 (α2(x2, σ

′) 6= ∅). The second clause is similar to the first

clause, except here G2 initiates σ and G1 tracks by executing σ′ ∈ M1(σ) 6= M1(ε). In the third

clause, σ is executable in G1 and either it is unobservable to G2 (σ ∈ M2(ε)) or there is no M2-

indistinguishable event defined at state x2 (α2(x2, M2(σ)) = ∅). So, σ occurs asynchronously

in G1. (Note that G2 does not block it since σ is enabled by both G1 and G2 by virtue of

its membership in Σe((x1, x2)) = Σe(x1) ∩ Σe(x2).) The fourth clause can be understood in a

similar way as the third clause. Finally, an ε-transition in the composition corresponds to an

asynchronous execution of a label in Mi(ε), i = 1, 2, in which case only Gi participates.

The event priority set of G1
M1
A1
‖M2

A2
G2 can be taken to be A := A1 ∪ A2, whereas the
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class of observationally indistinguishable events for an event σ in G1
M1
A1
‖M2

A2
G2 is given by

M(σ) := M1(σ) ∩M2(σ).

Remark 20 In the special case when both systems have identity mask (Id) functions, the

PSCM reduces to the PSC. I.e., G1
Id
A1
‖Id

A2
G2 = G1A1‖A2G2. To see this, when M1 = M2 = Id,

M1(σ) = M2(σ) = {σ} for all σ ∈ Σ, the transition function of Definition 17 simplifies to:

α((x1, x2), σ) :=





α1(x1, σ)× α2(x2, σ), if





σ ∈ Σe((x1, x2)),

α1(x1, σ) 6= ∅,
α2(x2, σ) 6= ∅,

α1(x1, σ)× {x2}, if





σ ∈ Σe((x1, x2)),

α1(x1, σ) 6= ∅,
α2(x2, σ) = ∅,

{x1} × α2(x2, σ), if





σ ∈ Σe((x1, x2)),

α2(x2, σ) 6= ∅,
α1(x1, σ) = ∅,

∅, otherwise
α(x, ε) := (α1(x1, ε)× {x2}) ∪ ({x1} × α2(x2, ε)).

Consider clause 1. Then αi(xi, σ) 6= ∅ ⇔ σ ∈ Σ(xi) ⇔ σ ∈ Σ(x1) ∩ Σ(x2) ⊆ Σe((x1, x2)).

So the condition of clause 1 is equivalent to αi(xi, σ) 6= ∅ as in clause 1 of definition of PSC.

Next consider clause 2. Then α1(x1, σ) 6= ∅, α2(x2, σ) = ∅ ⇒ α ∈ Σ(x1) − Σ(x2). So for

σ ∈ Σe((x1, x2)) to hold, σ ∈ Ac
2. So the condition of clause 2 is equivalent to α1(x1, σ) 6= ∅,

α2(x2, σ) = ∅, σ 6∈ A2 as in clause 2 of definition of PSC. Clause 3 can be analyzed similar to

clause 2.

The following example illustrates the concept of PSCM.

Example 23 Consider G1 and G2 shown in Figure 7.1, with

A1 = {a},M1(a) = M1(b) = {a, b},M1(c) = {ε, c},M1(d) = {d};

A2 = {b}, M2(a) = M2(d) = {a, d},M2(b) = {b},M2(c) = {c}.

G1
M1
A1
‖M2

A2
G2 is drawn in Figure 8, where for simplicity a state (x1, x2) of the composition is
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2

1

3

a b

c

A

B C

a d
a d

1A

2B
1C

c , ε

aa

3B2C

Figure 7.1 G1 (left), G2 (middle), and G1
M1
A1
‖M2

A2
G2 (right)

written as x1x2. At state 1A,

Σe(1A) = [{a, b} ∪ {b, c, d}] ∩ [{a, d} ∪ {a, c, d}] = {a, c, d}.

Since for a ∈ Σe(1A), α1(1, a) = {2}, a, d ∈ M2(a), α2(A, a) = {B}, and α2(A, d) = {C},
by clause 1, we have the transitions (1A, a, 2B) and (1A, a, 2C) in G1

M1
A1
‖M2

A2
G2. Similarly, for

a ∈ Σe(1A), α2(A, a) = {B}, a, b ∈ M1(a), α1(1, a) = {2}, and α1(1, b) = {3}. By clause 2,

we have the transitions (1A, a, 2B) and (1A, a, 3B) in G1
M1
A1
‖M2

A2
G2. Similarly, for d ∈ Σe(1A),

α2(A, d) = {C}, d ∈ M1(d) and α1(1, d) = ∅. By clause 4, we have the transition (1A, d, 1C)

in G1
M1
A1
‖M2

A2
G2. Note that for c ∈ Σe(1A), α1(1, c) = ∅ and α2(A, c) = ∅. Thus, transition on

c at state 1A in G1
M1
A1
‖M2

A2
G2 does not exist.

At state 2B,

Σe(2B) = [{c} ∪ {b, c, d}] ∩ [∅ ∪ {a, c, d}] = {c, d}.

Since for c ∈ Σe(2B), α1(2, c) = {3}, c ∈ M2(c) and α2(B, c) = ∅. By clause 3, we have the

transition (2B, c, 3B) in G1
M1
A1
‖M2

A2
G2. Also, since c ∈ M1(ε), by clause 5, transition (2B, ε, 3B)

is defined in G1
M1
A1
‖M2

A2
G2.

When the priority set of the composition is taken to be the union of the two priority

sets, and the event-indistinguishability partition is taken to be the intersection of the two

event-indistinguishability partitions, then the property of associativity may not be preserved

under PSCM. This is in contrast to the operations of PSC and MPSC (both are known to be

associative), showing again the generality of PSCM.
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Remark 21 Consider G1, G2, and G3 drawn in Figure 7.2, with

A1 = {a},M1(a) = M1(b) = {a, b},M1(c) = {c};

A2 = {b},M2(a) = M2(c) = {a, c},M2(b) = {b};

A3 = {c},M3(b) = M3(c) = {b, c},M3(a) = {a}.

2

1

3

a b

A

B C

a c

(1)

(2) (3)

b c

1A(1)

2C(1) 3B(1) 1C(3)2B(1) 1C(2)

ca
a

a
c

3B(1)

1A(1)

a
a c c

c

2B(1) 1C(3) 1B(3) 1C(2)

Figure 7.2 G1 (top left), G2 (top middle), G3 (top right), (G1
M1
A1
‖M2

A2
G2)

M1∩M2
A1∪A2

‖M3
A3

G3 (bottom left), and G1
M1
A1
‖M2∩M3

A2∪A3
(G2

M2
A2
‖M3

A3
G3)

(bottom right)

The state machines (G1
M1
A1
‖M2

A2
G2)M1∩M2

A1∪A2
‖M3

A3
G3 and G1

M1
A1
‖M2∩M3

A2∪A3
(G2

M2
A2
‖M3

A3
G3) are also

drawn in Figure 7.2 (details are omitted), from which the non-associativity of PSCM is clear.

As discussed below under certain assumptions, PSCM can be converted to PSC, in which

case the property of associativity of PSC carries over to that of PSCM.

7.2 Augmentation for Conversion to PSC/SSC

The main feature of PSCM (when compared to PSC) is that execution of an event enabled

in the composition by a system can be tracked by another system by synchronously executing

an indistinguishable event. We call such synchronous execution M -synchronous executions, or
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simply M -synchronizations. One purpose of augmentation is to introduce new transitions that

let such M -synchronizations be computed as ordinary synchronizations, where the synchroniz-

ing transitions carry the same label. Another purpose is to also capture asynchronous execu-

tions also as ordinary synchronous executions by introducing appropriate self-loop transitions

in systems that are non-participants, and for unobservable events appropriate ε-transitions in

the systems where unobservable events are executable. It is clear that augmentation in Gj for

an asynchronous execution of Gi will be a self-loop, whereas the augmentation for a transition

in Gi that Gj tracks, will be along side the tracking transition, and also augmentation on

ε-transition in Gj will be along side an unobservable event transition executable in Gj . Care

must be taken so that it is always the case that an augmented transition of Gj synchronizes

with an existing transition of Gi, i.e., an augmented transition of Gj should not synchronize

with an augmented transition of Gi, since such a transition is not possible in the original

composition.

Letting Augi(xi) ⊆ Σ denote the set of labels in Σ with which state xi in system Gi

can be augmented, then so as they are not stray transitions introduced by augmentation one

constraint the set of augmented events should satisfy is that they be locally enabled, i.e.,

Augi(xi) ∩ Σ ⊆ Σe(xi) ∩ Σ = [Σ(xi) ∪Ac
i ]

= [Σ(xi) ∩Ai] ∪ [Σ−Ai]

= [Σ(xi) ∩Ai] ∪ [A−Ai] ∪ [Σ−A],

where A := ∪iAi denotes the set of all priority events. So the above provides an upper bound

for Augi(xi).

Consider first an event σ in the local priority set Ai. As mentioned earlier, for σ to be a

candidate for augmentation at xi (i.e., σ ∈ Aug(xi)), σ must be locally enabled. Since σ ∈ Ai,

this means σ must be locally executable (i.e., σ ∈ Σi(xi)). Now if σ is locally executable, an

augmentation on σ is not required if it is completely observable, i.e., if σ ∈ Σoi. Thus

If σ ∈ Augi(xi) ∩Ai, then it should hold that σ ∈ [Ai ∩ Σ(xi)− Σoi].

Now if σ ∈ Ai ∩Σ(xi)−Σoi so that an augmentation on σ is performed at xi, then for this
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transition to not synchronize with another augmented transition in another system, it must be

the case that there exists at least one system where no augmentation on σ is performed. This

is guaranteed by having j such that σ ∈ Aj ∩ Σoj . Thus

If σ ∈ Augi(xi) ∩Ai, then it should hold that ∃j, σ ∈ [Σ(xi)− Σoi] ∩ [Aj ∩ Σoj ]. (7.1)

Next consider an event σ not in local priority set Ai, but in priority set for some system

(σ ∈ A − Ai). Then it is locally enabled and so a candidate for augmentation. Also since σ

is in priority set of another system Gj , it is guaranteed that σ is globally executable only if it

is locally executable in Gj (i.e., σ ∈ Σ(xj)). In order to avoid synchronization of augmented

transition in one system by augmented transition in another system, it must be the case that

no augmentation is performed on the same event in at least one system. This is guaranteed

by further having σ ∈ Σoj . Thus

If σ ∈ Augi(xi) ∩ [A−Ai], then it should hold that ∃j, σ ∈ [Aj ∩ Σoj ]. (7.2)

Finally consider an event σ in priority set of none of the systems (σ ∈ Σ − A). Then

σ is locally enabled in every system, and so a candidate for augmentation in each system.

However, it is possible that σ is not locally executable in any one of them, i.e., it is possible

that σ ∈ Σe((x1, · · · , xn)) − ∪iΣ(xi). Then augmentation on σ will allow synchronization of

transition that are augmented transitions in all systems. This suggests that augmentation

cannot be performed on events in Σ−A. In other words,

σ ∈ Aug(xi) ∩ [Σ−A] should be impossible. (7.3)

Combining 7.1, 7.2, and 7.3 it can be obtain that,

If σ ∈ Augi(xi)∩Σ, then it should hold that ∃j, σ ∈ [(Ai∩Σ(xi)−Σoi)∪(A−Ai)]∩ [Aj ∩Σoj ].

(7.4)

In other words, in order to perform augmentation on σ ∈ Σ at state xi of Gi, either (i) σ is

a priority event of Gi, is executable at xi, and is not completely observable by Gi, or (ii) σ is a

non-priority event of Gi but a priority event of some system. In either case there must exist a
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system for which σ is a priority event and is completely observable. Allowing for the possibility

of augmentation on any priority event, we make the following requirement assumption.

Assumption 1 For i ≤ n, consider NSM Gi possessing event priority set Ai and observation

mask Mi. Suppose ∀σ ∈ A = ∪iAi, ∃j such that σ ∈ Aj ∩ Σoj .

Under Assumption 1, all events in A = ∪iAi are candidates for augmentation. Moreover

the label ε can be used for augmentation whenever an unobservable event is locally defined.

Algorithm 6 For i ≤ n, consider NSM Gi possessing event priority set Ai and observation

mask Mi. The following algorithm computes augmented Gi, GAugi
i := (Xi, Σ, αAug

i , X0i).

1. For each state xi of Gi,

Augi(xi) :=





[Ai ∩ Σ(xi)− Σoi] ∪ [A−Ai] ∪ {ε} if Σ(xi) ∩A ∩Mi(ε) 6= ∅
[Ai ∩ Σ(xi)− Σoi] ∪ [A−Ai] otherwise

2. For σ ∈ Augi(xi)−Mi(ε), if αi(xi, Mi(σ)) 6= ∅, add transitions on σ from xi to all states

in the set αi(xi, Mi(σ)), otherwise add self-loop on σ at xi;

3. For σ ∈ Augi(xi)∩Mi(ε), add self-loop on σ at xi. Further if αi(xi, σ) 6= ∅, add transitions

on ε from xi to all states in this set.

In other words, for augmentation on observable σ, we add σ-transitions along side all

existing transitions on σ-indistinguishable events, and if none such transitions exist, we simply

add a self-loop on σ. On the other hand (when σ is unobservable), we augment by adding a

self-loop on σ, together with ε-transitions along side any existing σ-transitions.

The following example illustrates Algorithm 6.

Example 24 Consider G1 and G2 shown in Figure 7.3, with

A1 = {d, e},M1(a) = M1(b) = {a, b},M1(c) = {c},M1(d) = {d},M1(e) = {e};

A2 = {a, c},M2(a) = {a},M2(c) = {c},M2(b) = M2(d) = M2(e) = {ε, b, d, e}.
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a b
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Figure 7.3 G1 (first), G2 (second), GAug1
1 (third), GAug2

2 (fourth), and
G1

M1
A1
‖M2

A2
G2 (fifth)

Then A = A1 ∪A2 = {a, c, d, e}, Σo1 = {c, d, e} and Σo2 = {a, c}. For state 1 in G1, since

Σ(1) ∩A ∩M1(ε) = {a, b} ∩ {a, c, d, e} ∩ ∅ = ∅,

Aug1(1) = [A1 ∩ Σ(1)− Σo1] ∪ [A−A1]

= [{d, e} ∩ {a, b} − {c, d, e}] ∪ [{a, c, d, e} − {d, e}]

= {a, c}.

For a ∈ Aug1(1), since a 6∈ M1(ε) and α1(1,M1(a)) = α1(1, {a, b}) = {2, 3}, by step 2 of

Algorithm 6, transition (1, a, 3) is added in G1 for augmentation. For c ∈ Aug1(1), since

c 6∈ M1(ε) and α1(1,M1(c)) = ∅, by step 2 of Algorithm 6, transition (1, c, 1) is added in G1

for augmentation. Similarly, one can compute Aug1(2) = {a, c} = Aug1(3). The state machine

GAug1
1 is drawn in Figure 7.3.

For state A in G2, since

Σ(A) ∩A ∩M2(ε) = {a, e} ∩ {a, c, d, e} ∩ {ε, b, d, e} = {e} 6= ∅,

Aug2(A) = [A2 ∩ Σ(A)− Σo2] ∪ [A−A2] ∪ {ε}

= [{a, c} ∩ {a, e} − {a, c}] ∪ [{a, c, d, e} − {a, c}] ∪ {ε}

= {d, e, ε}.

For d ∈ Aug2(A), since d ∈ M2(ε) and α2(A, d) = ∅, by step 3 of Algorithm 6, transi-

tion (A, d, A) is added in G2 for augmentation. For e ∈ Aug2(A), since e ∈ M2(ε) and
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α2(A, e) = {C}, by step 3 of Algorithm 6, transitions (A, e, A) and (A, ε, C) are added in

G2 for augmentation. Similarly, one can compute Aug2(B) = {d, e} = Aug1(C). The state

machine GAug2
2 is drawn in Figure 7.3. Finally, the state machine G1

M1
A1
‖M2

A2
G2 is also drawn

in Figure 7.3.

Since we do not augment with events in [Σ − A], through the augmentation we are able

to simulate only those asynchronous or M -synchronous executions as synchronous executions

that occur on events outside [Σ − A], i.e., on events in A. So after the augmentation, the

priority sets of both the systems can only be enlarged to the set A, where all events will occur

synchronously. This is summarized in the following theorem.

Theorem 18 Under the Assumption 1, G1
M1
A1
‖M2

A2
G2 = GAug1

1
M1
A ‖M2

A GAug2
2 .

Proof: Since the state sets, the event sets, and the initial states of the two NSM’s are all

identical, we only need to show that they also have the identical set of transitions. For

notational convenience, the set of events defined (resp., enabled) at a state xi of GAugi
i is

denoted by ΣAug(xi) (resp., ΣAug,e(xi)). Since the priority set of GAugi
i is A, it follows that

ΣAug,e(xi) = ΣAug(xi) ∪Ac ∪ {ε}.
By Algorithm 6, events defined at xi of GAugi

i are given by,

ΣAug(xi)

= Σ(xi) ∪Augi(xi)

=





Σ(xi) ∪ [Ai ∩ Σ(xi)− Σoi] ∪ [A−Ai] ∪ {ε} if Σ(xi) ∩A ∩Mi(ε) 6= ∅
Σ(xi) ∪ [Ai ∩ Σ(xi)− Σoi] ∪ [A−Ai] otherwise

(a)
=





Σ(xi) ∪ [A−Ai] ∪ {ε} if Σ(xi) ∩A ∩Mi(ε) 6= ∅
Σ(xi) ∪ [A−Ai] otherwise

Equality (a) holds since Ai ∩ Σ(xi) ⊆ Σ(xi), which implies Ai ∪ Σ(xi) − Σoi ⊆ Σ(xi). So, we

have

ΣAug,e((x1, x2))

= ΣAug,e(x1) ∩ ΣAug,e(x2)
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= ([ΣAug(x1) ∪Ac] ∪ {ε}) ∩ ([ΣAug(x2) ∪Ac] ∪ {ε})

= ([Σ(x1) ∪ [A−A1] ∪Ac] ∩ [Σ(x2) ∪ [A−A2] ∪Ac]) ∪ {ε}
(b)
= ([Σ(x1) ∪Ac

1] ∩ [Σ(x2) ∪Ac
2]) ∪ {ε}

= Σe((x1, x2))

Equality (b) holds since

[A−Ai] ∪Ac = [A−Ai] ∪ [Σ−A] = Σ−Ai = Ac
i .

It follows that the set of enabled events at (x1, x2) in G1
M1
A1
‖M2

A2
G2 is the same as the set

of enabled events at (x1, x2) in GAug1
1

M1
A ‖M2

A GAug2
2 . Since Gi is a subautomaton of GAugi

i , it

follows that each transition of the left NSM is also a transition of the right NSM.

Next we prove the converse that each transition of the right NSM is also a transition of the

left NSM. Since we do not augment an event outside A, it holds that a transition of the right

NSM on an event outside A is also a transition of the left NSM. Consider next a transition on

an event σ ∈ A. Then without loss of generality, by Assumption 1, we can assume σ ∈ A2∩Σo2.

Then it suffices to prove that a transition on an event σ ∈ A2 ∩Σo2 of the right NSM is also a

transition of the left NSM.

By Definition 17, for a transition on σ to occur in the composed system, σ must be enabled

by both systems, i.e., σ ∈ ΣAug,e((x1, x2)). Then

σ ∈ [A2 ∩ Σo2] ∩ ΣAug,e((x1, x2))

⇒ σ ∈ [A2 ∩ Σo2] ∩ [([Σ(x1) ∪Ac
1] ∩ [Σ(x2) ∪Ac

2]) ∪ {ε}]

⇒ σ ∈ [Σ(x1) ∪Ac
1] ∩ [Σ(x2) ∩A2 ∩ Σo2].

Since σ ∈ Σ(x2), exists a transition (x2, σ, x′2) in G2. Also since

σ ∈ Σ(x1) ∪Ac
1

= [Σ(x1) ∩ Σo1] ∪ [Σ(x1)− Σo1] ∪Ac
1

= [Σ(x1) ∩ Σo1] ∪ [([Σ(x1)− Σo1] ∪Ac
1) ∩M1(ε)] ∪ [([Σ(x1)− Σo1] ∪Ac

1)−M1(ε)],

the following cases exist.
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1. σ ∈ Σ(x1) ∩ Σo1.

In this case, since σ is observable and already defined at x1, there is no augmentation on

σ at x1 in G1. Since there is no augmentation on σ in G2 at any of its states, including

x2, there is no newly introduced transition on σ in the right NSM.

2. σ ∈ ([Σ(x1)− Σo1] ∪Ac
1)−M1(ε).

(a) If α1(x1,M1(σ)) 6= ∅, then by step 2 of Algorithm 6, for x′1 ∈ α1(x1, σ1) with σ1 ∈
M(σ),

if transition (x1, σ1, x
′
1) defined in G1,

then transitions (x1, σ1, x
′
1), (x1, σ, x′1) defined in GAug1

1 .

Then exists synchronous transition ((x1, x2), σ, (x′1, x′2)) in GAug1
1

M1
A ‖M2

A GAug2
2 . It also

holds that by clause 1 of Definition 17, the transition ((x1, x2), σ,(x′1, x′2)) is in G1
M1
A1
‖M2

A2
G2.

(b) If α1(x1,M1(σ)) = ∅, then by step 2 of Algorithm 6,

transition (x1, σ, x1) is defined in GAug1
1 .

Then exists synchronous transition ((x1, x2), σ, (x1, x
′
2)) in GAug1

1
M1
A ‖M2

A GAug2
2 . It also

holds that this transition is in G1
M1
A1
‖M2

A2
G2 by clause 4 of Definition 17.

3. σ ∈ ([Σ(x1)− Σo1] ∪Ac
1) ∩M1(ε).

(a) If σ ∈ Σ(x1), then σ ∈ Σ(x1)∩A∩M1(ε), and by step 1 of Algorithm 6, ε ∈ Aug1(x1).

By step 3 of Algorithm 6,

if transition (x1, σ, x′1) defined in G1,

then transitions (x1, σ, x′1), (x1, ε, x
′
1), (x1, σ, x1) defined in GAug1

1 .

Then exist synchronous transitions ((x1, x2), σ, (x1, x
′
2)) and ((x1, x2),σ, (x′1, x′2)), and

asynchronous transitions ((x1, x
′
2), ε, (x

′
1, x

′
2)) and ((x1, x2), ε, (x′1, x2)) in GAug1

1
M1
A ‖M2

A

GAug2
2 . It also holds that by clause 4 of Definition 17, the transition ((x1, x2), σ, (x1, x

′
2))

is in G1
M1
A1
‖M2

A2
G2, whereas by clause 2 of Definition 17, the transition ((x1, x2),σ, (x′1, x′2))
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is in G1
M1
A1
‖M2

A2
G2, and finally, by clause 5 of Definition 17, transitions ((x1, x

′
2), ε, (x

′
1, x

′
2))

and ((x1, x2), ε, (x′1, x2)) are in G1
M1
A1
‖M2

A2
G2.

(b) If σ 6∈ Σ(x1), then by step 3 of Algorithm 6,

(x1, σ, x1) is defined in GAug1
1 .

Then exists synchronous transition ((x1, x2), σ, (x1, x
′
2)) in GAug1

1
M1
A ‖M2

A GAug2
2 . It also

holds that this transition is in G1
M1
A1
‖M2

A2
G2 by clause 4 of Definition 17.

This completes the proof.

In the special case, when the event priority sets exhaust the entire event set, i.e., when

A = Σ, all M -synchronous executions can be simulated as ordinary synchronous executions.

Then no M -synchronizations are needed and so all masks can be treated as identity mask. We

state this formally below.

Assumption 2 For i ≤ n, consider NSM Gi possessing event priority set Ai such that A =

∪iAi = Σ.

Theorem 19 Under the Assumptions 1 and 2,

G1
M1
A1
‖M2

A2
G2 = GAug1

1
M1
Σ ‖M2

Σ GAug2
2 = GAug1

1
Id
Σ ‖Id

Σ GAug2
2 .

Proof: By Theorem 18, we have G1
M1
A1
‖M2

A2
G2 = GAug1

1
M1
Σ ‖M2

Σ GAug2
2 . Thus, it suffices to prove

that

GAug1
1

M1
Σ ‖M2

Σ GAug2
2 = GAug1

1
Id
Σ ‖Id

Σ GAug2
2 . (7.5)

Since the state sets, the event sets, and the initial states of the two NSM’s are all identical,

we only need to show that they also have the identical set of transitions. Note that since

the mask functions of the right NSM of (7.5) are identity masks, no M -synchronizations are

allowed in the right NSM of (7.5). Consequently, the right NSM of (7.5) is a subautomaton of

the left NSM of (7.5). Hence, each transition of the right NSM of (7.5) is also a transition of

the left NSM of (7.5). It remains to prove the converse that each transition of the left NSM
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of (7.5) is also a transition of the right NSM of (7.5). The analysis carried out in proof of

Theorem 18 is also valid here since Theorem 18 applies under one less assumption.

We consider transitions on an event σ ∈ A in left NSM. Then as in proof of Theorem 18,

we can assume σ ∈ A2 ∩ Σo2. Then as in the proof of Theorem 18, we again have the cases 1,

2(a), 2(b), 3(a), and 3(b). There is no new transition introduced in case 1. In case 2(a), each

M -synchronization by a transition on σ1 in GAug1
1

M1
Σ ‖M2

Σ GAug2
2 is duplicated by an ordinary

synchronization on σ in GAug1
1

M1
Σ ‖M2

Σ GAug2
2 . In cases 2(b), 3(a), and 3(b), each asynchronous

execution on σ in GAug1
1

M1
Σ ‖M2

Σ GAug2
2 is duplicated by an ordinary synchronous execution on σ

in GAug1
1

M1
Σ ‖M2

Σ GAug2
2 , whereas each asynchronous execution on ε in GAug1

1
M1
Σ ‖M2

Σ GAug2
2 is du-

plicated by an appropriate ε-transition in GAug1
1

M1
Σ ‖M2

Σ GAug2
2 . Thus, by replacing non-identity

masks M1 and M2 by the identity mask, only certain duplicate transitions on σ ∈ A are

avoided, but no σ-transition of the left NSM is removed in the right NSM.

Finally, due to Assumption 2, A = Σ, and so the above statements are true of all transitions

on all events σ ∈ Σ. This completes the proof.

We showed that under Assumptions 1 and 2, PSCM of two systems having non-identity

masks can be computed first by augmenting each of the systems, then computing PSCM of

the augmented systems possessing identity masks. Further, by Remark 20, when two systems

interact through identity masks, their PSCM reduces to simply their PSC. Also note that when

the event priority set of each system is the entire event set Σ, PSC reduces to SSC. This leads

to the following corollary.

Corollary 4 Under the Assumptions 1 and 2,

G1
M1
A1
‖M2

A2
G2 = GAug1

1
M1
Σ ‖M2

Σ GAug2
2 = GAug1

1
Id
Σ ‖Id

Σ GAug2
2 = GAug1

1 Σ‖ΣGAug2
2 = GAug1

1 ‖GAug2
2 .

The result in the above corollary can be read as follows. Under Assumptions 1 and 2,

PSCM((G1, A1,M1), (G2, A2,M2)) = PSC((GAug1
1 , A), (GAug2

2 , A)) = SSC(GAug1
1 , GAug2

2 ).

Note that Assumptions 1 and 2 automatically hold when one of systems can observe every

event completely (has identity mask) and has priority over every event (priority set = Σ).
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This yields the following corollary, which is useful in supervisory control setting, as a plant

can “observe” every event and has priority over every event.

Corollary 5 G1
Id
Σ ‖M

A2
G2 = GAug1

1 Σ‖ΣGAug2
2 = G1Σ‖ΣGAug2

2 = G1‖GAug2
2 .

Proof: Since priority set of G1 is Σ, and its observation mask is Id, it follows that A1 = Σ

and Σo1 = Σ. Thus A1 ∩ Σo1 = Σ, which implies that σ ∈ A1 ∩ Σo1 for any σ ∈ Σ. Thus,

Assumption 1 holds. Also since A1 ∪ A2 = Σ ∪ A2 = Σ, Assumption 2 also holds. Then the

first equality in assertion of the corollary follows from Corollary 4.

To show the second equality of the assertion, it suffices to show that GAug1
1 = G1. Since

each event is observable in G1, M1(ε) = ∅. So for each state x1 in G1, Σ(x1)∩M1(ε) = ∅. Thus

Aug1(x1) = [A−A1] ∪ [A1 ∩ Σ(x1)− Σo1]

= [Σ− Σ] ∪ [Σ ∩ Σ(x1)− Σ]

= ∅.

Since Aug1(x1) = ∅ for any state x1 in G1, no augmentation takes place in G1, i.e., GAug1
1 =

G1. Finally the last equality in the assertion of the corollary follows from the equivalence of

PSC and SSC when each priority set is the entire event set Σ.

Note that no assumptions are needed in Corollary 5.

7.3 Control for Language Equivalence via PSCM

In this section, we extend the theory of supervisory control under partial observation to

the present setting where control is exercised by means of interaction via PSCM (under the

restriction that the event priority set of the supervisor is a subset of the event priority set of the

plant, i.e., there are no “driven” events). The plant is modeled by a NSM G = (X, Σ, α, X0)

having event priority set Σ and identity observation mask. The supervisor is modeled as

another NSM S = (Y,Σ, β, Y0) having event priority set Σc = Σ − Σu, the set of controllable

events, and an observation mask M . We let Σo denote the set of completely observable events

of a supervisor. The control specification is generated by a state machine R = (Q,Σ, δ,Q0).
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The control task is to design a supervisor S such that the behavior of the controlled plant

equals the specification language, i.e., L(GId
Σ ‖M

Σc
S) = L(R). We show that both the existence

and synthesis of a supervisor can be determined polynomially.

In Kumar et al. (2005a), SSC based control under partial observation was studied, allowing

the supervisor to be nondeterministic. Due to the use of SSC, supervisor was required to be

(Σu,M)-compatible. It was shown that a necessary and sufficient condition for the existence

of a (Σu,M)-compatible supervisor such that the behavior of the controlled system equals the

specification language is achievability.

Definition 18 Kumar et al. (2005a)

1. K ⊆ Σ∗ is said to be Σu-controllable with respect to Σ∗ if ∀s ∈ pr(K) and ∀a ∈ Σu,

sa ∈ pr(K).

2. K ⊆ Σ∗ is said to be M -recognizable with respect to Σ∗ if ∀s, t ∈ Σ∗ and ∀a ∈ Σ with

M(a) = M(ε), sat ∈ pr(K) ⇒ sa∗t ⊆ pr(K).

3. K ⊆ Σ∗ is said to be (Σu,M)-achievable with respect to Σ∗ ((Σ∗,Σu,M)-achievable for

short) if K is Σu-controllable and M -recognizable with respect to Σ∗, and ∀s, t ∈ Σ∗,

∀a ∈ Σ, b ∈ Σu with M(a) = M(b), sat ∈ pr(K) ⇒ {sbt} ⊆ pr(K).

4. K ⊆ L(G) is said to be (L(G), Σu,M)-achievable if exists (Σ∗, Σu,M)-achievable K ′ such

that pr(K) = pr(K ′) ∩ L(G).

It was shown in Kumar et al. (2005a) that (L(G), Σu,M)-achievability of prefix-closed

language is preserved under intersection and so the infimal (L(G), Σu, M)-achievable superlan-

guage of a language K ⊆ L(G), denoted infPAL(G)(K), exists. Further it holds that,

infPAL(G)(K) = infPAΣ∗(K) ∩ L(G),

and so infPA(L(G)(K) can be computed by first computing infPAΣ∗(K). The following

algorithm was given in (Kumar et al., 2005a, Algorithm 1) to compute a generator R̂ of the

language infPAΣ∗(K).
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Algorithm 7 Kumar et al. (2005a) Let R = (Q,Σ, δ,Q0) be a state machine with L(R) =

pr(K).

A1 For each transition (q, b, q1) with either b ∈ M(ε) or ∃(q, b′, q2) such that M(b) = M(b′) 6=
M(ε), replace (q, b, q1) by a pair of transitions (q, ε, q′1) and (q′1, b, q1), where q′1 is a newly

added state.

A2 For every transition (q, b, q′) with b ∈ M(ε), add transitions (q, b, q) and (q, ε, q′).

A3 For every state q and every event b ∈ Σu ∩ M(ε), if b is not defined at q then let

δ(q, b) = δ(q, ε).

A4 For every state q, every event b ∈ Σu−M(ε), and every transition (q, a, q′) with M(a) =

M(b), add a transition (q, b, q′).

A5 (i) For every state q and every event b ∈ Σu −M(ε), if no such an event a with M(a) =

M(b) is defied at q then add a transition (q, b, dump), where dump is an added state, (ii)

∀σ ∈ Σu, δ(dump, σ) = {dump}.

Let the state machine constructed by Algorithm 7 be denoted R̂. Then from (Kumar et al.,

2005a, Theorem 6), L(R̂) = infPAΣ∗(L(R)).

Next we aim to derive a necessary condition for the existence of a supervisor such that

L(GId
Σ ‖M

Σc
S) = L(R). Since G possesses priority set Σ and identity mask, from Corollary 5,

GId
Σ ‖M

Σc
S = GΣ‖ΣSAug. Let the augmented supervisor be given by, SAug = (Y,Σ, βAug, Y0). We

first observe that L(SAug) is (Σ∗,Σu,M)-achievable and the PSCM-based controlled behavior

L(GId
Σ ‖M

Σc
S) is (L(G),Σu,M)-achievable.

Lemma 17 Consider plant G with priority set Σ and identity observation mask, a supervisor

S with priority set Σc and observation mask M . Then

1. L(SAug) is (Σ∗,Σu,M)-achievable.

2. L(GId
Σ ‖M

Σc
S) is (L(G), Σu,M)-achievable.
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Proof:

1. For y ∈ Y , let Aug(y) be the set of labels used for augmenting transitions in S to obtain

SAug. Then from Algorithm 6,

∀y ∈ Y, Aug(y) :=





[Σc ∩ Σ(y)− Σo] ∪ Σu ∪ {ε} if Σ(y) ∩M(ε) 6= ∅
[Σc ∩ Σ(y)− Σo] ∪ Σu otherwise

(7.6)

Note that the set of events defined at state y of SAug is given by, Σ(y) ∪Aug(y).

We first show that L(SAug) is Σu-controllable with respect to Σ∗. Pick s ∈ L(SAug),

a ∈ Σu. Let y ∈ Y be a state reached by s in SAug. Then since Σu ⊆ Aug(y), it follows

that sa ∈ L(SAug).

Next we show that L(SAug) is M -recognizable with respect to Σ∗. Pick s, t ∈ Σ∗,

a ∈ M(ε) such that sat ∈ L(SAug). Let ys, ysa be states such that ys is reached by

executing s at Y0 in SAug, ysa is reached by executing a at ys in SAug, and t is defined at

ysa. Then a ∈ Σ(ys)∪Aug(ys). We claim that a ∈ Aug(ys) even when a ∈ Σ(ys). Clearly

this is the case when a ∈ Σu since Σu ⊆ Aug(ys). On the other hand, if a ∈ Σc, then it

also holds that a ∈ Σc − Σo (a ∈ M(ε) implies a 6∈ Σo). This together with a ∈ Σ(ys)

implies that a ∈ Σ(ys) ∩ Σc − Σ0 ⊆ Aug(ys). Since a ∈ Aug(ys) ∩M(ε), from step 3 of

Algorithm 6, transitions (ys, a, ys) and (ys, ε, ysa) are added in S for augmentation. It

follows that sa∗t ⊆ L(SAug).

Finally, we show that L(SAug) is (Σu,M)-achievable with respect to Σ∗. Pick s, t ∈ Σ∗,

a ∈ Σ, b ∈ Σu with M(a) = M(b) such that sat ∈ L(SAug). Then as before, a ∈ Aug(ys).

Since b ∈ Σu, and Σu ⊆ Aug(ys), b ∈ Aug(ys). If b ∈ M(a) 6= M(ε), then from step

2 of Algorithm 6 a b-transition is added along side each a-transition in SAug. On the

other hand if b ∈ M(a) = M(ε), then from step 3 of Algorithm 6, a self-loop transition

(ys, b, ys) is added in S and also an ε-transition is added along side each a-transition. In

either case, it follows that that sbt ∈ L(SAug). Thus, L(SAug) is (Σ∗, Σu,M)-achievable,

as desired. This completes the proof of the first part of Lemma 17.
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2. Now we prove the second part of Lemma 17. By Corollary 5,

L(GId
Σ ‖M

Σc
S) = L(G‖SAug) = L(G) ∩ L(SAug).

By Lemma 17, L(SAug) is (Σ∗, Σu,M)-achievable. So from last part of Definition 18,

L(G) ∩ L(SAug) = L(GId
Σ ‖M

Σc
S) is (L(G),Σu,M)-achievable.

From the second part of Lemma 17, if a specification language equals the language of

a PSCM controlled plant, then it must be (L(G),Σu,M)-achievable. Thus, (L(G), Σu,M)-

achievability serves as a necessary condition for the existence of a supervisor. Next we aim

to show the converse that if a specification language is (L(G), Σu,M)-achievable, then it is

enforcible by a PSCM-based control.

We propose the following algorithm for constructing a supervisor starting from a specifica-

tion state machine.

Algorithm 8 Consider a specification state machine R = (Q,Σ, δ,Q0).

1. For every transition (q, b, q1) with either M(b) = M(ε) or ∃(q, b′, q2) such that M(b) =

M(b′) 6= M(ε), replace (q, b, q1) by a pair of transitions (q, ε, q′1) and (q′1, b, q1), where q′1

is a newly added state. Denote the resulting state machine as R′ = (Q′, Σ, δ′, Q0).

2. For every state q′ of R′, every event b ∈ Σu − M(Σ(q′)) − M(ε), add a transition

(q′, b, dump), where dump is an added state. Denote the resulting state machine as

R̃ := (Q̃,Σ, δ̃, Q0)(Q′ ∪ {dump},Σ, δ̃, Q0).

The following example illustrates Algorithm 8.

Example 25 Consider R shown in Figure 7.4, with

Σ = {a, b, c, d}, Σu = {b, c, d}, M(a) = M(b) = {a, b} 6= M(ε),M(c) = {c, ε},M(d) = {d}.

Since at state 1, M(a) = M(b), by step 1 of Algorithm 8, replace transition (1, a, 2)

(resp. (1, b, 3)) by transitions (1, ε, 2′) and (2′, a, 2) (resp. (1, ε, 3′) and (3′, b, 3)). Next since
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Figure 7.4 R (left), R′ (middle), and R̃ (right)

M(c) = M(ε), by step 1 of Algorithm 8, replace (1, c, 4) by (1, ε, 4′) and (4′, c, 4). The resulting

state machine R′ is shown in Figure 7.4.

At state 1, since Σu − M(Σ(1)) − M(ε) = {b}, by step 2 of Algorithm 8, transition

(1, b, dump) is added in R′, where dump is an newly added state. At state 2′, Σu−M(Σ(2′))−
M(ε) = {d}, so transition (2′, d, dump) is added in R′ to obtain R̃. Similarly, one can compute

the set of transitions on Σu −M(Σ(·))−M(ε) for other states. The details are omitted here.

The resulting state machine R̃ is shown in Figure 7.4.

We claim that when L(R) is (L(G), Σu,M)-achievable, R̃ constructed in Algorithm 8 can

be used a supervisor, i.e., L(GId
Σ ‖M

Σc
R̃) = L(R). Note that L(GId

Σ ‖M
Σc

R̃) = L(G) ∩ L(R̃Aug).

In the following we first prove that L(R̃Aug) equals infPAΣ∗(L(R)). The proof is based on

showing the equivalence of the languages L(R̃Aug) and L(R̂), where the construction of R̂ is

stated above in Algorithm 7.

Lemma 18 Given deterministic R, the set of controllable events Σc and a mask M , L(R̃Aug) =

L(R̂), where R̃ is computed by Algorithm 8, R̃Aug is computed by Algorithm 6, and R̂ is

computed by Algorithm 7.

Proof: In order to facilitate the proof, the computation of R̃Aug is shown below by combining

Algorithms 6 and 8.

B1 For every transition (q, b, q1) with either M(b) = M(ε) or ∃(q, b′, q2) such that M(b) =
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M(b′) 6= M(ε), replace (q, b, q1) by a pair of transitions (q, ε, q′1) and (q′1, b, q1), where q′1

is a newly added state.

B2 For every state q, every event b ∈ Σu −M(Σ(q)) −M(ε), add a transition (q, b, dump),

where dump is an added state. The result of these two steps is the state machine,

R̃ := (Q̃,Σ, δ̃, Q0).

B3 For q̃ ∈ Q̃ and σ ∈ Aug(q̃)−M(ε), (i) if δ̃(q̃, M(σ)) 6= ∅, add transitions on σ from q̃ to

all states in the set δ̃(q̃,M(σ)), (ii) otherwise add a self-loop on σ at q̃;

B4 For q̃ ∈ Q̃ and σ ∈ Aug(q̃)∩M(ε), (i) add self-loop on σ at q̃. (ii) Further if δ̃(q̃, σ) 6= ∅,
add transitions on ε from q̃ to all states in the set δ̃(q̃, σ).

Next we compare the construction of R̃Aug and that of R̂. Since steps A1 and B1 introduce

certain new states in R the same way, whereas the steps A5 and B2 both introduce the “dump”

state, the state spaces of R̃Aug and R̂ are the same. So we next compare the transitions in the

two state machines.

• Steps A1 and B1 introduce the transitions in the same way.

• Step A2 introduces self-loop transition on an unobservable event σ at a state q where σ

is defined, and also ε-transitions along side all σ-transitions at q. Since σ ∈ Σ(q) − Σo,

and

Aug(q) = [Σ(q) ∩ Σc − Σo] ∪ Σu ∪ {ε}

⊇ [Σ(q) ∩ Σc − Σo] ∪ [Σ(q) ∩ Σu − Σo]

= [Σ(q)− Σo],

it follows that σ ∈ Aug(q). Also, σ ∈ M(ε) and so the same set of transitions as

introduced by step A2 are introduced by steps B4(i) and B4(ii).

• At a state q, step A3 introduces transitions on an uncontrollable and unobservable event

along side each ε-transition at q (including a self-loop at q). Only a self-loop transition on

such an event is added at q by step B4(i). (Recall that Σu ⊆ Aug(·).) As we will see this
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is the only difference between R̂ and R̃Aug: For b ∈ Σu ∩M(ε) if (q, ε, q′) is a transition

in R̃, then step A3 adds transitions (q, b, q) and (q, b, q′), whereas only the transition

(q, b, q) is added by step B4(i). This however keeps the languages L(R̂) and L(R̃Aug) to

be the same since the extra transition (q, b, q′) can be simulated as the self-loop transition

(q, b, q) followed by the ε-transition (q, ε, q′) without affecting the trace generated.

• At a state q, step A4 introduces transitions on an event σ ∈ Σu−M(ε)∩M(Σ(q)) along

side all transitions in M(σ) ∩ Σ(q). The same set of transitions are introduced on the

event σ ∈ Σu −M(ε) ∩M(Σ(q)) ⊆ Aug(q)−M(ε) by step B3(i).

• Steps A5(i) and B2 introduce the uncontrollable transitions, that are not unobservable

but for which no indistinguishable events are locally defined, in the same way.

• Step A5(ii) introduces self-loops on uncontrollable events at the dump state. Since in

R̃, no transitions are defined at the dump state, Aug(dump) = Σu. At the dump state,

self-loops on events in Aug(dump) −M(ε) = Σu −M(ε) are introduced by step B3(ii),

whereas self-loops on events in Aug(dump) ∩M(ε) = Σu ∩M(ε) are introduced by step

B4(i).

It follows that except for one case, the transitions in R̂ are the same as those in R̃Aug, and

even in this exceptional case, the difference is such that the language is preserved, proving the

assertion that L(R̂) = L(RAug).

The following corollary immediately follows.

Corollary 6 Given deterministic R, the set of controllable events Σc and a mask M , if

L(R) ⊆ L(G) is (L(G), Σu,M)-achievable, then L(GId
Σ ‖M

Σc
R̃) = L(R), where R̃ is computed by

Algorithm 8.

Proof: From Corollary 5, L(GId
Σ ‖M

Σc
R̃) = L(G) ∩ L(R̃Aug). By Lemma 18, L(R̃Aug) = L(R̂),

where L(R̂) = infPAΣ∗(L(R)) (Kumar et al., 2005a, Theorem 6). It follows that

infPAL(G)(L(R)) = L(G) ∩ infPAΣ∗(L(R))

= L(G) ∩ L(R̃Aug)
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= L(GId
Σ ‖M

Σc
R̃)

Since L(R) is given to be (L(G),Σu,M)-achievable, it holds that L(R) = infPAL(G)(L(R)),

and so the result follows.

By Lemma 17 and Corollary 6, we obtain the following necessary and sufficient condition

for the existence of a PSCM-based supervisor enforcing a given specification.

Theorem 20 Given G, R, the set of controllable events Σc and a mask M , there exists a super-

visor S such that L(GId
Σ ‖M

Σc
S) = L(R) if and only if L(R) ⊆ L(G) and L(R) is (L(G), Σu,M)-

achievable.

Proof: (Only If) From Lemma 17, L(GId
Σ ‖M

Σc
S) is (L(G), Σu,M)-achievable, and since L(R) =

L(GId
Σ ‖M

Σc
S), L(R) is also (L(G), Σu,M)-achievable. Further from Corollary 5, L(GId

Σ ‖M
Σc

S) =

L(G‖SAug) = L(G) ∩ L(SAug), it follows that L(R) = L(GId
Σ ‖M

Σc
S) ⊆ L(G).

(If) Since L(R) ⊆ L(G) is (L(G), Σu, M)-achievable, using Algorithm 8 we construct NSM

R̃. Then from Corollary 6, L(GId
Σ ‖M

Σc
R̃) = L(R), i.e., R̃ is the desired supervisor. This

completes the proof.

Remark 22 It follows from Theorem 20 that the existing tests for achievability, which is

of complexity O(|G||R|2) Kumar et al. (2005a), can be applied to verify the existence of a

supervisor. Further if the existence condition is satisfied, a supervisor can be obtained by

applying Algorithm 8 to a generator R of the specification language, implying the synthesis

of a supervisor is of complexity O(|R|). Note that in general the state machine obtained by

Algorithm 8 is not (Σu,M)-compatible. Thus, by using the control mechanism of PSCM, the

requirement of (Σu,M)-compatibility of a supervisor has been removed, as desired.

7.4 An Illustrative Example

We illustrate Theorem 20 through a manufacturing example, taken from Kumar et al.

(2005a). The manufacturing system consists of one robot, two workstations and two storage-

stations. The robot moves among the workstations and storage-stations on a guide rail. Ini-

tially, the robot departs from workstation 1 (event a). Then it picks up a part either from
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storage-station 1 (event b1) or storage-station 2 (event b2), and delivers the part to workstation

2 for processing (event c). After the processing, robot returns the part to a storage-station.

After returning parts, robot goes back to workstation 1 and can repeat the whole process. A

state machine model G of the system is drawn in Figure 7.5.

Not returning the part to its original storage-station is not desirable. The specification

R, also shown in Figure 7.5, gives the desired behavior. According to the specification, after

processing, the robot returns the part to its original storage-station. The rest of the behavior

is the same as the one feasible in the system.
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Figure 7.5 G (left), R (middle), and R̃ (right)

We require that the part must be delivered to workstation 2 for processing, i.e., the event

c is uncontrollable. Also, only events a and c are completely observable. Events b1 and b2 are

observationally indistinguishable. Thus, we have Σ = {a, b1, b2, c}, Σc = {a, b1, b2}, and the

observation mask M is given by, M(a) = {a}, M(b1) = M(b2) = {b1, b2} and M(c) = {c}.
It can be verified that L(R) is not observable, i.e., a deterministic supervisor does not exist.

However, L(R) is (L(G),Σu,M)-achievable and so from Theorem 20, a PSCM-based supervisor

does exist. (Thanks to PSCM-based control formalism developed here that allows supervisor
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to be nondeterministic.)

We use Algorithm 8 to construct R̃ that acts as a supervisor.

At state q1 of R, M(b1) = M(b2), by step 1 of Algorithm 8, we replace transition (q1, b1, q2)

(resp., (q1, b2, q3)) by a pair of transitions (q1, ε, q
′
1) and (q′1, b1, q2) (resp., (q1, ε, q

′′
2) and (q′′2 , b2, q3)).

Next by step 2 of Algorithm 8, since Σu−M(Σ(q))−M(ε) = {c} for state q ∈ {q0, q1, q
′
1, q

′′
1 , q4, q5, q6},

we add transitions on c from states q0, q1, q
′
1, q

′′
1 , q4, q5, and q6 to the newly added “dump” state.

We obtain the state machine R̃ drawn in Figure 7.5. One can verify that L(GId
Σ ‖M

Σc
R̃) =

L(R), i.e., R̃ serves as a desired supervisor. It should be noted that R̃ is not (Σu,M)-

compatible. As an example, the uncontrollable event c is undefined at the dump state.

7.5 Control for Bisimulation Equivalence via PSCM

In this section, we study the PSCM-based control to ensure bisimilarity of the controlled

plant and the given specification.

We first show the following result for a (Σu,M)-compatible S and its augmentation.

Lemma 19 Given plant G and the set of controllable events Σc and a mask M , if S is (Σu,M)-

compatible, then S = SAug.

Proof: If σ ∈ Aug(y) −M(ε), where Aug(y) is computed by Equation 7.6, then (i) σ ∈ Σu,

(ii) σ ∈ Σc ∩ Σ(y), or (iii) σ = ε.

For case (i), since S is Σu-compatible, σ is defined at state y. Thus, no transition is added

in the augmentation.

For case (ii) or (iii), since S is M -compatible, β(y, σ) = β(y, M(σ) ∩ Σ(y)). Thus, no

transition is added in the augmentation. So we conclude S = SAug.

From Lemma 17 and Corollary 5, if we have a (Σu,M)-compatible supervisor such that

G‖S ' R, then GId
Σ ‖M

Σc
S = G||SAug = G‖S ' R. I.e., if there exists a SSC-based bisimilarity

enforcing supervisor, then there exists a PSCM-based bisimilarity enforcing supervisor. This

result is shown in the following corollary, its proof is omitted.
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Corollary 7 Given plant G and the set of controllable events Σc and a mask M , if exists a

(Σu,M)-compatible supervisor S such that G‖S ' R, then exists a supervisor S′ such that

GId
Σ ‖M

Σc
S′ ' R.

However, the reverse of Corollary 7 may not hold since SAug may not be (Σu,M)-compatible.

For this consider G and S shown in Figure 7.6, where Σc = {a2} and M(a1) = M(a2) =

{ε, a1, a2}. SAug is also shown in Figure 7.6, which is not (Σu, M)-compatible.

a1 a2 a1 a2a1

a1,a2

,ε ε,

Figure 7.6 G (left), S (middle) and SAug (right)

Next we define a new augmentation from which the augmented S is (Σu,M)-compatible.

Algorithm 9 For i ≤ n, consider NSM Gi possessing event priority set Ai and observation

mask Mi. The following algorithm computes augmented Gi, G
Augi
i := (Xi,Σ, αAug

i , X0i).

1. Same as step 1 of Algorithm 6.

2. Same as step 2 of Algorithm 6.

3. For σ ∈ Augi(xi) ∩Mi(ε), if αi(xi,Mi(σ)) 6= ∅, add transitions on σ from xi to all states

in this set, and add self-loop on σ at xi.

Lemma 20 Given plant G with the set of controllable events Σc and a mask M , and supervisor

S,

1. SAug is (Σu,M)-compatible, and

2. SAug ' SAug,

where SAug and SAug are computed from Algorithm 9 and 6, respectively.
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Proof:

1. Since Σu ⊆ Aug(y), so SAug is Σu-compatible. Further by step 2 and 3, σ-transition

is added along every indistinguishable transition at a state. This implies that SAug is

M -compatible. Thus, SAug is (Σu,M)-compatible.

2. Note that the state spaces of SAug and SAug are same. And also they are same if there is

at most one unobservable event defined at each state of S. I.e., in this case, there exists

a bisimulation relation Φ := {(y, y) | y ∈ S} such that SAug 'Φ SAug.

Suppose σi ∈ Σ(y) ∩M(ε) and yi ∈ β(y, σi) for i = 1, 2. Then by step 3 of Algorithm 9

and 6, the only difference of SAug and SAug is that transition σj is added along transition

σi in SAug but not in SAug for i, j = 1, 2 and i 6= j. However, note that σi is defined

as a self-loop in both machines, so yj ∈ βAug(y, σi) and is reachable by σ∗i in SAug, and

yj ∈ βAug(y, σiε) and is reachable by σ∗i in SAug. Thus, the bisimulation relation Φ is

still valid even when there are more than one unobservable events defined at each state

of S. This proves the lemma.

From Lemma 20 and Corollary 5 , if we have a supervisor S such that GId
Σ ‖M

Σc
S ' R, then

there exists a (Σu,M)-compatible supervisor SAug such that G‖SAug ' G‖SAug = GId
Σ ‖M

Σc
S '

R, I.e., if there exists a PSCM-based bisimilarity enforcing supervisor, then there exists a

SSC-based bisimilarity enforcing supervisor. This result is shown in the following corollary, its

proof is omitted.

Corollary 8 Given plant G and the set of controllable events Σc and a mask M , if exists a

supervisor S such that GId
Σ ‖M

Σc
S ' R, then exists a (Σu, M)-compatible supervisor S′ such that

G‖S′ ' R.

From Corollary 7 and 8, the following theorem is obvious, and its proof is omitted.

Theorem 21 Given plant G and the set of controllable events Σc and a mask M , exists a

supervisor S such that GId
Σ ‖M

Σc
S ' R if and only if exists a (Σu,M)-compatible supervisor S′

such that G‖S′ ' R.
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Remark 23 From Theorem 4, the SSC-based bisimilarity enforcing supervisor exists in the

state space 2X×Q. Thus, by Theorem 21, the PSCM-based bisimilarity enforcing supervisor

also exists in the state space 2X×Q.

7.6 Conclusion

In this chapter we introduced the notion of prioritized synchronous composition under mask

(PSCM) to model interaction/control of discrete event systems under partial observation. This

extends the formalism of prioritized synchronous composition (PSC) which assumes identity

observation masks. We established a link between PSCM and PSC (and thereby SSC) under

certain constraints on the priority sets and the mask functions: PSCM of two systems can be

alternatively obtained by first augmenting individual systems, and next computing the PSC

of the augmented systems. For this to work, the priority sets of the two systems must exhaust

the entire event set, and each event must be observable to a system having priority over the

event.

We showed that when PSCM is adopted as a mechanism of control, not only the control

& observation-compatibility requirements are removed of a supervisor, the existence condition

is given by achievability that is weaker than controllability and observability combined. (The

weaker condition is required since the supervisor is allowed to be nondeterministic.) This

suggests that the notion of PSCM, introduced in the paper is an appropriate generalization of

PSC to account for partial observation. We also showed that both the existence verification

and synthesis of a PSCM-based supervisor is polynomially solvable. The existence is linear

in the size of the plant and quadratic in the size of the specification, whereas the synthesis is

linear in the size of the specification. For PSCM-based bisimilarity control, we showed that

the small model theorem remains valid.
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CHAPTER 8. CONCLUSION AND FUTURE WORK

8.1 Summary

In this dissertation, we studied supervisory control of discrete event systems for enforcing

bisimulation equivalence and simulation equivalence specifications. The bisimulation equiva-

lence allows the specification of the full set of branching constraints (such as nonblocking),

while the simulation equivalence can express specifications in the the universal fragment of

branching-time logics (such as properties of all sequencing/branching behaviors of a system).

We also proposed a formalism of prioritized synchronous composition under mask (PSCM) for

modeling interaction/control of partially observed discrete event systems.

The main contributions of the dissertation are summarized as follows.

1. We studied a more general bisimulation equivalence control problem, namely, in which

both the plant as well as the specification are nondeterministic. No prior work addresses

this problem in this generality – they impose determinism either on the plant or on the

specification. Our main result is a small model theorem showing that a supervisor for

enforcing bisimulation equivalence between the specification and the controlled system

exists if and only if it exists over a certain finite state space, namely the power set of

Cartesian product of the plant and the specification state spaces.

2. We showed that the simulation equivalence represents a nice compromise between the

complexity of control vs. its fineness. While bisimilarity enforcing control is the finest,

the best known complexity for such a control is doubly exponential in the sizes of the

plant and the specification. On the other hand, while a language equivalence control is

polynomially solvable, it is the coarsest. A simulation equivalence specification is finer
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than a language equivalence specification, yet it remains polynomially solvable.

3. When the system model is deterministic, we introduced a notion of state-controllability-

bisimilar (resp., state-achievability-bisimilar) as part of the necessary and sufficient con-

dition for the existence of a supervisor under complete (resp., partial) observation. We

showed that under complete observation, the complexity of both verifying existence and

synthesis of a bisimilarity enforcing supervisor is linear in size of plant and specification.

Under partial observation, the existence of a bisimilarity enforcing supervisor can be

determined polynomially in both plant and specification states, and the upper bound for

the synthesis we provided is exponential.

4. We introduced PSCM to model interaction/control of partially observed discrete event

systems. We showed that when PSCM is adopted as a mechanism of interaction, not

only the control & observation-compatibility requirements are removed of a supervisor,

the existence condition for a supervisor such that the controlled system is language

equivalent to a specification is given by achievability that is weaker than controllability

and observability combined. (The weaker condition is required since we allow supervisors

to be nondeterministic.) This suggests that the notion of PSCM introduced in this work

is an appropriate generalization of PSC to account for partial observation. We studied

control of (nondeterministic) DESs for achieving bisimulation equivalence specifications

using PSCM as a control mechanism, and established an equivalence between a PSCM-

based bisimilarity enforcing controller and a SSC-based bisimilarity enforcing controller

by showing that if one of them exists and the other one also exists.

8.2 Directions for Further Research

This thesis has laid a foundation for control of discrete event systems for achieving bisim-

ulation and simulation equivalence, and opens up several avenues for future work in this area.

1. Partial specification: In many applications, the system events can be partitioned into the

external and the internal events. The specification is only concerned with the behavior
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projected onto the external events. Future work can study the problem of control for

achieving bisimulation equivalence to a partial-specification.

2. DESs modeled as Petri-Nets: Petri-nets provides a graphical and compact representation

of concurrent nondeterministic systems. It is important to study the problem of control

of DESs modeled as Petri-Nets for bisimulation or simulation equivalence.

3. Timed DESs: In some application, not only the order but also the time of the occurrence

of events is important. Future work can study the problem of control of DESs modeled as

timed automata or timed Petri-Nets for achieving bisimulation or simulation equivalence.
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